This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341102 #15 Feb 25 2021 16:18:53 %S A341102 1,5,4,23,35,10,119,243,135,20,719,1701,1323,385,35,5039,12941,12166, %T A341102 5068,910,56,40319,109329,115099,59514,15498,1890,84,362879,1026065, %U A341102 1163370,689575,226800,40446,3570,120,3628799,10627617,12725075,8263750,3170200,722568,93786,6270,165 %N A341102 T(n, k) = [n, k] - {n, k}, where [n, k] are the (unsigned) Stirling cycle numbers and {n, k} the Stirling set numbers. Table T(n, k) read by rows, for n >= 3 and 1 <= k <= n-2. %H A341102 Peter Luschny, <a href="https://math.stackexchange.com/q/4037946">The difference of the Stirling cycle numbers and the Stirling set numbers</a>, Mathematics Stack Exchange, Feb. 2021. %F A341102 T(n, k) = Sum_{j=0..k} (binomial(n+j-1, 2*k) - binomial(n+k-j, 2*k))*A340556(k, j). %F A341102 E.g.f.: (1 - z)^(-x) - exp(x*(exp(z) - 1)) (unrestricted rows and n >= 0). %e A341102 Triangle starts: %e A341102 [ 3] [1] %e A341102 [ 4] [5, 4] %e A341102 [ 5] [23, 35, 10] %e A341102 [ 6] [119, 243, 135, 20] %e A341102 [ 7] [719, 1701, 1323, 385, 35] %e A341102 [ 8] [5039, 12941, 12166, 5068, 910, 56] %e A341102 [ 9] [40319, 109329, 115099, 59514, 15498, 1890, 84] %e A341102 [10] [362879, 1026065, 1163370, 689575, 226800, 40446, 3570, 120] %p A341102 # Giving full rows for n >= 0: %p A341102 gf := (1 - z)^(-x) - exp(x*(exp(z) - 1)); %p A341102 ser := series(gf, z, 20): coeffz := n -> coeff(ser,z,n): %p A341102 A341102row := n -> seq(n!*coeff(coeffz(n), x, k), k=0..n): %p A341102 for n from 0 to 9 do A341102row(n) od; %o A341102 (SageMath) %o A341102 for n in (3..11): %o A341102 print([stirling_number1(n, k) - stirling_number2(n, k) for k in (1..n-2)]) %o A341102 (PARI) T(n,k) = abs(stirling(n,k,1)) - stirling(n,k,2); \\ _Michel Marcus_, Feb 24 2021 %Y A341102 Cf. A132393, A048993, A048742, A033312, A000292, A340556. %K A341102 nonn,tabl %O A341102 3,2 %A A341102 _Peter Luschny_, Feb 24 2021