cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341107 a(n) = A341108(n)/A195441(n).

This page as a plain text file.
%I A341107 #5 Feb 18 2021 15:03:09
%S A341107 1,1,2,4,8,8,96,192,1152,384,1536,1536,18432,18432,73728,147456,
%T A341107 884736,884736,10616832,10616832,212336640,212336640,2548039680,
%U A341107 849346560,152882380800,30576476160,366917713920,40768634880,163074539520,163074539520,1956894474240
%N A341107 a(n) = A341108(n)/A195441(n).
%o A341107 (Sage)
%o A341107 def A341107(n):
%o A341107     def L(n, p, r):
%o A341107         s, q = 0, p - r
%o A341107         while q <= n:
%o A341107             s += n // q
%o A341107             q *= p
%o A341107         return s
%o A341107     if n < 2: return 1
%o A341107     p = prod(p^(L(n, p, 1) - L(n+1, p, 0)) for p in primes(n+1))
%o A341107     q = prod(p for p in prime_divisors(n + 1))
%o A341107     r = prod(p for p in (2..(n + 2)//(2 + n % 2))
%o A341107               if is_prime(p) and sum((n+1).digits(base = p)) >= p)
%o A341107     return ((n + 1) * p) // (q * r)
%o A341107 print([A341107(n) for n in (0..30)])
%Y A341107 Cf. A341108, A195441, A341109.
%K A341107 nonn
%O A341107 0,3
%A A341107 _Peter Luschny_, Feb 07 2021