This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341195 #12 Feb 15 2021 10:21:13 %S A341195 1,11,7,2,6,12,9,3,5,14,8,4,18,33,21,29,24,26,47,10,23,13,19,16,38,34, %T A341195 17,15,20,30,42,56,45,28,22,31,41,58,44,32,40,35,37,62,66,36,39,60,68, %U A341195 63,65,98,102,64,67,61,70,93,43,55,46,27,49,52,25,51,78 %N A341195 Squares visited by knight moves on a diagonally back and forth numbered board in two quadrants and moving to the lowest available unvisited square at every step. %C A341195 Board is numbered as follows: %C A341195 . 17 16 5 4 1 2 9 10 . . %C A341195 . . 18 15 6 3 8 11 24 . . %C A341195 . . . 19 14 7 12 23 . . . %C A341195 . . . . 20 13 22 . . . . %C A341195 . . . . . 21 . . . . . %C A341195 . . . . . . . . . . . %C A341195 This sequence is finite: At step 4408 square 4077 is visited, after which there are no unvisited squares within one knight move. %H A341195 Sander G. Huisman, <a href="/A341195/b341195.txt">Table of n, a(n) for n = 1..4408</a> %H A341195 N. J. A. Sloane and Brady Haran, <a href="https://www.youtube.com/watch?v=RGQe8waGJ4w">The Trapped Knight</a>, Numberphile video (January, 2019). %t A341195 (* Version 12.0 or higher needed *) %t A341195 ClearAll[ShowRoute,MakeMove,FindSequence] %t A341195 knightjump=Select[Tuples[Range[-2,2],2],Norm[#]==Sqrt[5]&]; %t A341195 ShowRoute[output_Association]:=Module[{colors},colors=(ColorData["Rainbow"]/@Subdivide[Length[output["Coordinates"]]-1.0]); %t A341195 Graphics[{Line[output["Coordinates"],VertexColors->colors],Disk[Last@output["Coordinates"],0.2],Style[Disk[Last[output["Coordinates"]]+#,0.2]&/@knightjump,Purple]}]] %t A341195 MakeMove[spiral_Association,visited_List]:=Module[{poss,hj},poss=Table[Last[Last[visited]]+hj,{hj,knightjump}]; %t A341195 poss=DeleteMissing[{spiral[#],#}&/@poss,1,\[Infinity]]; %t A341195 poss=Select[poss,FreeQ[visited[[All,2]],Last[#]]&]; %t A341195 If[Length[poss]>0,First[TakeSmallestBy[poss,First,1]],Missing[]]] %t A341195 FindSequence[start_:{0,0},grid_]:=Module[{positions,j,next},positions={{grid[start],start}}; %t A341195 PrintTemporary[Dynamic[j]]; %t A341195 Do[next=MakeMove[grid,positions]; %t A341195 If[next=!=Missing[],AppendTo[positions,next],Break[];],{j,\[Infinity]}]; %t A341195 <|"Coordinates"->positions[[All,2]],"Indices"->positions[[All,1]]|>] %t A341195 grid=ResourceFunction["LatticePointsArrangement"]["DiagonalZigZagEastQ34",20000]; %t A341195 grid=Association[MapIndexed[#1->#2[[1]]&,grid]]; %t A341195 ShowRoute[fs=FindSequence[{0,0},grid]] %t A341195 fs %t A341195 fs["Indices"] %t A341195 ListPlot[fs["Indices"]] %Y A341195 Cf. A316588, A316328, A316667, A337170. %K A341195 nonn,fini,full %O A341195 1,2 %A A341195 _Sander G. Huisman_, Feb 06 2021