cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341198 Number of points on or inside the circle of radius n, as rasterized by the midpoint circle algorithm.

This page as a plain text file.
%I A341198 #24 Jan 26 2025 15:10:23
%S A341198 1,5,21,37,61,97,129,177,221,277,349,413,489,569,657,749,845,957,1073,
%T A341198 1193,1313,1441,1581,1733,1877,2025,2209,2369,2553,2725,2909,3117,
%U A341198 3305,3513,3721,3941,4181,4405,4645,4889,5145,5401,5653,5941,6213,6493,6769,7065
%N A341198 Number of points on or inside the circle of radius n, as rasterized by the midpoint circle algorithm.
%C A341198 The number of points on the rasterized circle itself (of radius n) is given by 4*A022846(n) for n > 0.
%H A341198 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GausssCircleProblem.html">Gauss's Circle Problem</a>
%H A341198 Wikipedia, <a href="https://en.wikipedia.org/wiki/Midpoint_circle_algorithm">Midpoint circle algorithm</a>
%F A341198 a(n) == 1 (mod 4).
%F A341198 a(n) ~ Pi*n^2. More precisely, it is reasonable to expect that a(n) = Pi*n^2 + sqrt(8)*n + o(n), because there are Pi*n^2 + o(n) points in the disk x^2 + y^2 <= n^2 (Gauss's circle problem), all of which are inside the rasterized circle, and we can expect about half of the 4*sqrt(2)*n + O(1) points on the rasterized circle itself to be outside this disk (and there are no points between the disk and the rasterized circle).
%e A341198 In the figure below, the points on the rasterized circle of radius n are labeled with the number n. (Points without a label do not lie on any such circle.)
%e A341198                 9 9 9 9 9
%e A341198             9 9 8 8 8 8 8 9 9
%e A341198         9 9 8 8 7 7 7 7 7 8 8 9 9
%e A341198       9 . 8 7 7 6 6 6 6 6 7 7 8 . 9
%e A341198       9 8 7 . 6 5 5 5 5 5 6 . 7 8 9
%e A341198     9 8 7 . 6 5 . 4 4 4 . 5 6 . 7 8 9
%e A341198     9 8 7 6 5 4 4 3 3 3 4 4 5 6 7 8 9
%e A341198   9 8 7 6 5 . 4 3 2 2 2 3 4 . 5 6 7 8 9
%e A341198   9 8 7 6 5 4 3 2 . 1 . 2 3 4 5 6 7 8 9
%e A341198   9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9
%e A341198   9 8 7 6 5 4 3 2 . 1 . 2 3 4 5 6 7 8 9
%e A341198   9 8 7 6 5 . 4 3 2 2 2 3 4 . 5 6 7 8 9
%e A341198     9 8 7 6 5 4 4 3 3 3 4 4 5 6 7 8 9
%e A341198     9 8 7 . 6 5 . 4 4 4 . 5 6 . 7 8 9
%e A341198       9 8 7 . 6 5 5 5 5 5 6 . 7 8 9
%e A341198       9 . 8 7 7 6 6 6 6 6 7 7 8 . 9
%e A341198         9 9 8 8 7 7 7 7 7 8 8 9 9
%e A341198             9 9 8 8 8 8 8 9 9
%e A341198                 9 9 9 9 9
%e A341198 Counting the points on or inside a circle of given radius, one obtains a(0)=1, a(1)=5, a(2)=21, a(3)=37, a(4)=61, a(5)=97, ...
%o A341198 (Python)
%o A341198 def A341198(n):
%o A341198   n2=n**2
%o A341198   x=n
%o A341198   y=A=0
%o A341198   while y<=x:
%o A341198     dx=x**2+(y+1)**2-n2-x>=0
%o A341198     A+=x+(y!=0 and y!=x)*(x-2*y)+(dx and y==x-1)*(x-1)
%o A341198     x-=dx
%o A341198     y+=1
%o A341198   return 4*A+1
%Y A341198 First differences: A341199.
%Y A341198 Cf. A022846, A055979, A057655, A373193.
%K A341198 nonn
%O A341198 0,2
%A A341198 _Pontus von Brömssen_, Feb 06 2021