cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341217 a(k) is the lesser of the first pair of twin primes that starts a chain of k pairs of twin primes (p(1),p(1)+2), ..., (p(k),p(k)+2) where p(j+1) = 5*p(j)+4.

This page as a plain text file.
%I A341217 #17 Jul 30 2022 23:58:23
%S A341217 3,11,5,1720949,22362444257,57703877539769
%N A341217 a(k) is the lesser of the first pair of twin primes that starts a chain of k pairs of twin primes (p(1),p(1)+2), ..., (p(k),p(k)+2) where p(j+1) = 5*p(j)+4.
%C A341217 a(5) > 10^8 if it exists.
%e A341217 3 and 5 are twin primes, but 5*3+4 = 19 and 21 are not twin primes.
%e A341217 11 and 13 are twin primes, 5*11+4 = 59 and 61 are twin primes, but 5*59+4 = 299 and 301 are not twin primes.
%e A341217 5 and 7 are twin primes, 5*5+4 = 29 and 31 are twin primes, 5*29+4 = 149 and 151 are twin primes, but 5*149+4 = 749 and 751 are not twin primes.
%e A341217 1720949 and 1720951 are twin primes, 5*1720949+4 = 8604749 and 8604751 are twin primes, 5*8604749+4 = 43023749 and 43023751 are twin primes,
%e A341217 5*8604749+4 = 215118749 and 215118751 are twin primes, 5*1075593749+4 = 1075593749 and 1075593751 are not twin primes.
%p A341217 V:= [3,0,0,0]:
%p A341217 count:= 1:
%p A341217 for p from 5 by 6 while count < 4 do
%p A341217   if isprime(p) and isprime(p+2) then
%p A341217     ct:= 1:
%p A341217     q:= p;
%p A341217     do
%p A341217       q:= 5*q+4;
%p A341217       if not (isprime(q) and isprime(q+2)) then break fi;
%p A341217       ct:= ct+1;
%p A341217     od;
%p A341217     if V[ct] = 0 then V[ct]:= p; count:= count+1; fi;
%p A341217   fi
%p A341217 od:
%p A341217 V;
%Y A341217 Cf. A001359, A174922.
%K A341217 nonn,more
%O A341217 1,1
%A A341217 _J. M. Bergot_ and _Robert Israel_, Feb 06 2021
%E A341217 a(5) from _Martin Ehrenstein_, Feb 07 2021
%E A341217 a(6) from _Martin Ehrenstein_, Feb 10 2021