A341264 Primes p such that (p^512 + 1)/2 is prime.
3631, 5113, 10651, 12391, 13999, 22093, 34687, 38713, 38959, 39199, 39679, 44879, 51229, 57389, 58757, 59651, 60331, 61543, 63389, 64483, 72931, 77023, 80369, 91639, 100787, 115679, 119551, 120713, 121727, 122299, 132109, 135599, 140221, 143387, 143873, 145753
Offset: 1
Keywords
Examples
(3^512 + 1)/2 = 9661674916...6218270721 (a 244-digit number) = 134382593 * 22320686081 * 12079910333441 * 100512627347897906177 * 2652879528...2021744641 (a 193-digit composite number), so 3 is not a term. (3631^512 + 1)/2 = 2706508826...0763924481 (an 1823-digit number) is prime, so 3631 is a term. Since 3631 is the smallest prime p such that (p^512 + 1)/2 is prime, it is a(1) and is also A341211(9).
Comments