This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341270 #13 Feb 09 2021 03:54:17 %S A341270 1,1,2,3,4,6,7,10,12,15,17,25,24,32,37,45,46,63,62,82,83,97,104,141, %T A341270 130,158,170,201,202,255,242,302,306,350,367,448,416,503,522,610,597, %U A341270 716,690,825,832,921,945,1147,1085,1255,1272,1430,1435,1683,1631,1888 %N A341270 a(n) = Sum_{k=1..n} a(n mod k) for n > 0; a(0) = 1. %e A341270 a(1) = a(1 mod 1) = a(0) = 1. %e A341270 a(2) = a(2 mod 1)+a(2 mod 2) = a(0)+a(0) = 2. %e A341270 a(3) = a(3 mod 1)+a(3 mod 2)+a(3 mod 3) = a(0)+a(1)+a(0) = 3. %p A341270 a:= proc(n) option remember; %p A341270 `if`(n=0, 1, add(a(n mod k), k=1..n)) %p A341270 end: %p A341270 seq(a(n), n=0..62); # _Alois P. Heinz_, Feb 07 2021 %t A341270 a[0] = 1; a[n_] := a[n] = Sum[a[Mod[n, k]], {k, 1, n}]; Array[a, 50, 0] (* _Amiram Eldar_, Feb 08 2021 *) %o A341270 (Python) %o A341270 a = [1] %o A341270 for n in range(1,1000): %o A341270 a.append(sum(a[n%k] for k in range(1,n+1))) %o A341270 (PARI) a(n) = if (n==0, 1, sum(k=1, n, a(n % k))); \\ _Michel Marcus_, Feb 08 2021 %Y A341270 For Sum_{k=1..n} n mod k see A004125. %Y A341270 For Sum_{k=1..n} a(k) see A000079. %Y A341270 For Max_{k=1..n} a(n mod k)+1 see A113473. %K A341270 nonn %O A341270 0,3 %A A341270 _Rok Cestnik_, Feb 07 2021