A341274 Composite numbers k that are divisible by (k mod sopfr(k))+floor(k/sopfr(k)), where sopfr = A001414.
4, 6, 12, 16, 20, 21, 24, 27, 30, 36, 40, 45, 48, 52, 56, 60, 66, 70, 72, 75, 80, 84, 88, 90, 96, 105, 108, 112, 117, 126, 140, 150, 152, 160, 180, 182, 192, 195, 198, 200, 220, 224, 225, 231, 240, 252, 255, 256, 270, 286, 288, 290, 301, 306, 308, 320, 330, 344, 345, 352, 360, 378, 384, 396, 429
Offset: 1
Keywords
Examples
a(5) = 20 is a term because sopfr(20) = 2*2+5 = 9, and 20 is divisible by (20 mod 9)+floor(20/9) = 4.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
spf:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2]) end proc: filter:= proc(n) local s, m; if isprime(n) then return false fi; s:= spf(n); m:= n mod s; n mod (m + (n-m)/s) = 0 end proc: select(filter, [$4..500]);