This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341279 #10 Feb 09 2021 06:37:47 %S A341279 1,0,1,0,0,1,0,1,0,1,0,1,2,0,1,0,1,2,3,0,1,0,1,3,3,4,0,1,0,1,4,6,4,5, %T A341279 0,1,0,2,5,9,10,5,6,0,1,0,2,8,13,16,15,6,7,0,1,0,2,9,21,26,25,21,7,8, %U A341279 0,1,0,2,12,27,44,45,36,28,8,9,0,1,0,3,15,40,63,80,71,49,36,9,10,0,1 %N A341279 Triangle read by rows: T(n,k) = coefficient of x^n in expansion of (-1 + Product_{j>=1} 1 / (1 + (-x)^j))^k, n >= 0, 0 <= k <= n. %H A341279 Alois P. Heinz, <a href="/A341279/b341279.txt">Rows n = 0..200, flattened</a> %F A341279 G.f. of column k: (-1 + Product_{j>=1} (1 + x^(2*j-1)))^k. %F A341279 Sum_{k=0..n} (-1)^(n-k) * T(n,k) = A000009(n). %e A341279 Triangle T(n,k) begins: %e A341279 1; %e A341279 0, 1; %e A341279 0, 0, 1; %e A341279 0, 1, 0, 1; %e A341279 0, 1, 2, 0, 1; %e A341279 0, 1, 2, 3, 0, 1; %e A341279 0, 1, 3, 3, 4, 0, 1; %e A341279 0, 1, 4, 6, 4, 5, 0, 1; %e A341279 0, 2, 5, 9, 10, 5, 6, 0, 1; %e A341279 0, 2, 8, 13, 16, 15, 6, 7, 0, 1; %e A341279 0, 2, 9, 21, 26, 25, 21, 7, 8, 0, 1; %e A341279 0, 2, 12, 27, 44, 45, 36, 28, 8, 9, 0, 1; %e A341279 ... %p A341279 g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d] %p A341279 [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) %p A341279 end: %p A341279 T:= proc(n, k) option remember; %p A341279 `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, g(n)), %p A341279 (q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2)))) %p A341279 end: %p A341279 seq(seq(T(n, k), k=0..n), n=0..12); # _Alois P. Heinz_, Feb 09 2021 %t A341279 T[n_, k_] := SeriesCoefficient[(-1 + 2/QPochhammer[-1, -x])^k, {x, 0, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten %Y A341279 Columns k=0-10 give A000007, A000700, A338463, A341241, A341243, A341244, A341245, A341246, A341247, A341251, A341253. %Y A341279 Main diagonal and lower diagonals give A000012, A000004, A001477, A000217, A000290. %Y A341279 Row sums give A307058. %Y A341279 T(2n,n) gives A341265. %Y A341279 Cf. A000009, A047265, A060642, A286352, A308680. %K A341279 nonn,tabl %O A341279 0,13 %A A341279 _Ilya Gutkovskiy_, Feb 08 2021