This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341286 #37 Jul 19 2022 16:20:50 %S A341286 0,2435,3403,5625,8781,11140,22664,23325,32908,33346,34822,41332, %T A341286 58555,99180,103925,109272,133118,136386,145263,170740,180105,182142, %U A341286 194261,207459,208813,228224,249945,251991,266080,305840,341539,351824,359720,372287,380064,415434 %N A341286 Numbers k such that k plus the sum of the fifth powers of the digits of k is a cube. %e A341286 2435 is a term since 2435 + 2^5 + 4^5 + 3^5 + 5^5 = 19^3; %e A341286 3403 is a term since 3403 + 3^5 + 4^5 + 0^5 + 3^5 = 17^3. %p A341286 filter:= proc(n) local x, d; %p A341286 x:= n + add(d^5, d = convert(n, base, 10)); %p A341286 surd(x, 3)::integer %p A341286 end proc: %p A341286 select(filter, [$0..10^5]); # _Robert Israel_, Feb 09 2021 %t A341286 Select[Range[0, 500000], IntegerQ@ Power[# + Total[IntegerDigits[#]^5], 1/3] &] (* _Michael De Vlieger_, Feb 22 2021 *) %t A341286 Select[Range[0,416000],IntegerQ[Surd[#+Total[IntegerDigits[#]^5],3]]&] (* _Harvey P. Dale_, Jul 19 2022 *) %o A341286 (PARI) isok(k) = ispower(k+vecsum(apply(x->x^5, digits(k))), 3); \\ _Michel Marcus_, Feb 09 2021 %o A341286 (Python) %o A341286 from sympy import integer_nthroot %o A341286 def powsum(n): return sum(int(d)**5 for d in str(n)) %o A341286 def ok(n): return integer_nthroot(n + powsum(n), 3)[1] %o A341286 def aupto(lim): %o A341286 alst = [] %o A341286 for k in range(lim+1): %o A341286 if ok(k): alst.append(k) %o A341286 return alst %o A341286 print(aupto(415434)) # _Michael S. Branicky_, Feb 22 2021 %Y A341286 Cf. A055014 (sum of 5th powers of digits). %K A341286 base,nonn,less %O A341286 1,2 %A A341286 _Will Gosnell_, Feb 08 2021 %E A341286 More terms from _Michel Marcus_, Feb 09 2021 %E A341286 a(1)=0 prepended by _Michael S. Branicky_, Feb 22 2021