cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341288 Square array T(n, k), read by antidiagonals, n, k >= 0; T(n, k) = XOR_{u in B(n), v in B(k)} 2^(u XOR v) where XOR denotes the bitwise XOR operator and B(n) gives the exponents in expression for n as a sum of powers of 2.

This page as a plain text file.
%I A341288 #18 Dec 10 2023 17:24:12
%S A341288 0,0,0,0,1,0,0,2,2,0,0,3,1,3,0,0,4,3,3,4,0,0,5,8,0,8,5,0,0,6,10,12,12,
%T A341288 10,6,0,0,7,9,15,1,15,9,7,0,0,8,11,15,5,5,15,11,8,0,0,9,4,12,9,0,9,12,
%U A341288 4,9,0,0,10,6,12,13,15,15,13,12,6,10,0
%N A341288 Square array T(n, k), read by antidiagonals, n, k >= 0; T(n, k) = XOR_{u in B(n), v in B(k)} 2^(u XOR v) where XOR denotes the bitwise XOR operator and B(n) gives the exponents in expression for n as a sum of powers of 2.
%C A341288 For any x >= 0, the function n -> T(n, 2^x) is a self-inverse permutation of the nonnegative integers.
%C A341288 The set of nonnegative integers equipped with T forms a commutative monoid; its invertible elements are the odious numbers (A000069).
%C A341288 Hence A000069 equipped with T forms a group.
%H A341288 Rémy Sigrist, <a href="/A341288/b341288.txt">Table of n, a(n) for n = 0..10010</a> (rows 0..140)
%H A341288 Rémy Sigrist, <a href="/A341288/a341288.png">Colored representation of the table for n, k < 2^10</a>
%H A341288 Rémy Sigrist, <a href="/A341288/a341288_1.png">Colored representation of the table over the first 128 odious numbers</a>
%H A341288 Rémy Sigrist, <a href="/A341288/a341288_2.png">Colored representation of the table over the first 1024 evil numbers</a> (white pixels correspond to 0's)
%F A341288 T(n, k) = T(k, n) (T is commutative).
%F A341288 T(m, T(n, k)) = T(T(m, n), k) (T is associative).
%F A341288 T(n, 0) = 0 (0 is an absorbing element for T).
%F A341288 T(n, 1) = n (1 is the neutral element for T).
%F A341288 T(n, 2) = A057300(n).
%F A341288 T(n, 4) = A126006(n).
%F A341288 T(n, n) = A010060(n).
%F A341288 A010060(T(n, k)) = A010060(n) * A010060(k).
%e A341288 Array T(n, k) begins:
%e A341288   n\k|  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
%e A341288   ---+---------------------------------------------------------------
%e A341288     0|  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
%e A341288     1|  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
%e A341288     2|  0   2   1   3   8  10   9  11   4   6   5   7  12  14  13  15 -> A057300
%e A341288     3|  0   3   3   0  12  15  15  12  12  15  15  12   0   3   3   0
%e A341288     4|  0   4   8  12   1   5   9  13   2   6  10  14   3   7  11  15 -> A126006
%e A341288     5|  0   5  10  15   5   0  15  10  10  15   0   5  15  10   5   0
%e A341288     6|  0   6   9  15   9  15   0   6   6   0  15   9  15   9   6   0
%e A341288     7|  0   7  11  12  13  10   6   1  14   9   5   2   3   4   8  15
%e A341288     8|  0   8   4  12   2  10   6  14   1   9   5  13   3  11   7  15
%e A341288     9|  0   9   6  15   6  15   0   9   9   0  15   6  15   6   9   0
%e A341288    10|  0  10   5  15  10   0  15   5   5  15   0  10  15   5  10   0
%e A341288    11|  0  11   7  12  14   5   9   2  13   6  10   1   3   8   4  15
%e A341288    12|  0  12  12   0   3  15  15   3   3  15  15   3   0  12  12   0
%e A341288    13|  0  13  14   3   7  10   9   4  11   6   5   8  12   1   2  15
%e A341288    14|  0  14  13   3  11   5   6   8   7   9  10   4  12   2   1  15
%e A341288    15|  0  15  15   0  15   0   0  15  15   0   0  15   0  15  15   0
%e A341288                                                                      \
%e A341288                                                                       v
%e A341288                                                                     A010060
%o A341288 (PARI) B(n) = { my (b=vector(hammingweight(n))); for (k=1, #b, n -= 2^(b[k] = valuation(n, 2))); b }
%o A341288 T(n,k) = { my (nn=B(n), kk=B(k), v=0); for (i=1, #nn, for (j=1, #kk, v=bitxor(v, 2^bitxor(nn[i], kk[j])))); v }
%Y A341288 Cf. A000069, A010060, A057300, A126006, A133457.
%K A341288 nonn,tabl,look,base
%O A341288 0,8
%A A341288 _Rémy Sigrist_, Feb 08 2021