A341322 Primes p such that (p*r) == q (mod p+r) where q and r are the next primes after p.
2, 5, 7, 19
Offset: 1
Examples
For n=1: a(1) = p = 2, q = 3, r = 5, (2*5) mod (2+5) = 10 mod 7 = 3. For n=2: a(2) = p = 5, q = 7, r = 11, (5*11) mod (5+11) = 55 mod 16 = 7. For n=3: a(3) = p = 7, q = 11, r = 13, (7*13) mod (7+13) = 91 mod 20 = 11. For n=4: a(4) = p = 19, q = 23, r = 29, (19*29) mod (19+29) = 551 mod 48 = 23.
Links
- Wikipedia, Cramér's conjecture
Programs
-
Maple
N:= 10^6: # for terms <= N p:= 1: q:= 2: r:= 3: R:= NULL: while p < N do p:= q; q:= r; r:= nextprime(r); if p*r mod (p+r) = q then R:=R,p fi; od: R;
Comments