This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341355 #9 Feb 15 2021 22:50:34 %S A341355 1,2,3,4,5,3,3,2,4,6,2,3,3,3,2,4,2,7,3,2,6,4,7,3,4,3,3,3,3,4,2,5,2,4, %T A341355 3,8,3,3,4,4,2,2,3,7,5,8,5,3,4,2,5,3,3,3,6,3,4,3,2,2,3,4,3,6,3,4,2,2, %U A341355 2,3,3,2,5,3,3,3,9,2,3,2,4,4,2,4,4,3,8,8,3,6,6,2,2,6,3,3,2,5,2,4,3,6,9,3,4 %N A341355 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(1) = 1 and for n > 1, f(n) = [A341353(n), A341353(2*n)]. %C A341355 For all i, j: a(i) = a(j) => A329903(i) = A329903(j). %H A341355 Antti Karttunen, <a href="/A341355/b341355.txt">Table of n, a(n) for n = 1..65537</a> %H A341355 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %o A341355 (PARI) %o A341355 up_to = 65537; %o A341355 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; %o A341355 A007949(n) = valuation(n,3); %o A341355 A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; %o A341355 A341353(n) = A007949(A156552(n)); %o A341355 Aux341355(n) = if(1==n,1, [A341353(n), A341353(2*n)]); %o A341355 v341355 = rgs_transform(vector(up_to, n, Aux341355(n))); %o A341355 A341355(n) = v341355[n]; %Y A341355 Cf. A007949, A156552, A329903, A341353, A341354. %Y A341355 Cf. also A331304, A340680. %K A341355 nonn %O A341355 1,2 %A A341355 _Antti Karttunen_, Feb 14 2021