A341357 Primes p such that q*r == p (mod q+r) where q and r are the next primes after p.
5, 11, 17, 41, 101, 107, 191, 227, 311, 347, 461, 467, 641, 821, 857, 881, 1091, 1277, 1301, 1427, 1481, 1487, 1511, 1607, 1811, 1871, 1997, 2081, 2237, 2267, 2447, 2657, 2687, 3251, 3461, 3527, 3671, 3917, 4001, 4127, 4517, 4637, 4787, 4931, 4967, 5039, 5231, 5477, 5501, 5651, 6101, 6197, 6827
Offset: 1
Keywords
Examples
a(3) = 17 is in the sequence because with p = 17, q = 19, r = 23, q*r = 437 == 17 (mod 19+23=42).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
q:= 2: r:= 3: count:= 0: R:= NULL: while count < 100 do p:= q: q:= r: r:= nextprime(r); if (q*r) mod (q+r) = p then count:= count+1; R:= R, p fi; od: R;
Comments