A341358 Deficient numbers k > 1 such that k*p is abundant for all primes p dividing k.
315, 884, 1155, 26325, 27027, 40365, 44650, 55335, 63248, 70564, 72675, 85936, 100804, 106425, 116624, 130815, 145222, 224750, 244036, 318250, 321470, 421515, 489645, 526688, 531310, 569625, 629145, 702405, 730125, 820808, 829521, 852776, 885928, 933224, 969969
Offset: 1
Keywords
Examples
The sum of divisors of 315 = 3^2 * 5 * 7 is 624 < 315 * 2, so 315 is deficient; however, all of 315 * 3, 315 * 5 and 315 * 7 are abundant, thus 315 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000 (terms 1..303 from Jianing Song)
Programs
-
Mathematica
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); ff[p_, e_] := (p^(e + 2) - 1)/(p^(e + 2) - p); q[n_] := Module[{fct = FactorInteger[n], s}, s = (Times @@ f @@@ fct)/n; s < 2 && AllTrue[ff @@@ fct, # > 2/s &]]; Select[Range[2, 10^5], q] (* Amiram Eldar, Mar 14 2024 *)
-
PARI
isA341358(n) = if(sigma(n) < 2*n && n > 1, my(d=factor(n), k=omega(n)); for(i=1, k, if(!isA005101(n*d[i,1]), return(0))); return(1), 0) \\ see A005101 for its program
-
PARI
is(n) = {my(f = factor(n), p = f[, 1], e = f[, 2], s = 2/sigma(f,-1)); if(n == 1 || s <= 1, return(0)); for(i = 1, #p, if((p[i]^(e[i]+2) - 1)/(p[i]^(e[i]+2) - p[i]) < s, return(0))); 1;} \\ Amiram Eldar, Mar 14 2024
Comments