This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341386 #9 Feb 10 2021 18:14:38 %S A341386 1,8,44,184,662,2120,6256,17276,45277,113568,274592,643220,1465838, %T A341386 3260428,7097338,15153288,31791822,65645360,133584864,268213400, %U A341386 531879490,1042657088,2022113788,3882468712,7384455791,13921287616,26026092198,48273051172,88868177735 %N A341386 Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^4. %H A341386 Alois P. Heinz, <a href="/A341386/b341386.txt">Table of n, a(n) for n = 4..10000</a> %p A341386 g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/ %p A341386 `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n) %p A341386 end: %p A341386 b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, %p A341386 g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) %p A341386 end: %p A341386 a:= n-> b(n, 4): %p A341386 seq(a(n), n=4..32); # _Alois P. Heinz_, Feb 10 2021 %t A341386 nmax = 32; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^4, {x, 0, nmax}], x] // Drop[#, 4] & %Y A341386 Cf. A026007, A027906, A321949, A327382, A341384, A341385, A341387, A341388, A341390, A341391. %K A341386 nonn %O A341386 4,2 %A A341386 _Ilya Gutkovskiy_, Feb 10 2021