This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341400 #7 Feb 10 2021 19:31:10 %S A341400 1,6,16,26,36,57,87,107,122,157,207,247,277,322,392,452,482,537,637, %T A341400 717,773,863,973,1053,1113,1203,1343,1473,1553,1668,1858,1998,2053, %U A341400 2173,2373,2543,2673,2818,3018,3218,3338,3483,3753,3973,4113,4344,4634,4834,4944,5139,5449 %N A341400 Number of nonnegative solutions to (x_1)^2 + (x_2)^2 + ... + (x_5)^2 <= n. %C A341400 Partial sums of A038671. %H A341400 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a> %F A341400 G.f.: (1 + theta_3(x))^5 / (32 * (1 - x)). %F A341400 a(n^2) = A055404(n). %p A341400 b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0, %p A341400 b(n, k-1)+add(b(n-j^2, k-1), j=1..isqrt(n)))) %p A341400 end: %p A341400 a:= proc(n) option remember; b(n, 5)+`if`(n>0, a(n-1), 0) end: %p A341400 seq(a(n), n=0..50); # _Alois P. Heinz_, Feb 10 2021 %t A341400 nmax = 50; CoefficientList[Series[(1 + EllipticTheta[3, 0, x])^5/(32 (1 - x)), {x, 0, nmax}], x] %Y A341400 Cf. A000122, A000606, A003059, A038671, A055404, A055411, A175360, A224212, A224213, A302862, A341401, A341402. %K A341400 nonn %O A341400 0,2 %A A341400 _Ilya Gutkovskiy_, Feb 10 2021