cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341409 a(n) = (Sum_{k=1..3} k^n) mod n.

This page as a plain text file.
%I A341409 #21 Feb 10 2023 14:29:06
%S A341409 0,0,0,2,1,2,6,2,0,4,6,2,6,0,6,2,6,2,6,18,15,14,6,2,1,14,0,14,6,14,6,
%T A341409 2,3,14,31,2,6,14,36,18,6,38,6,10,36,14,6,2,13,24,36,46,6,2,1,42,36,
%U A341409 14,6,38,6,14,36,2,16,2,6,30,36,14,6,2,6,14,51,22,17,14,6,18,0,14,6,38,21
%N A341409 a(n) = (Sum_{k=1..3} k^n) mod n.
%H A341409 Seiichi Manyama, <a href="/A341409/b341409.txt">Table of n, a(n) for n = 1..10000</a>
%F A341409 a(n) = A001550(n) mod n.
%F A341409 a(A056645(n)) = 0.
%p A341409 a:= n-> add(i&^n, i=1..3) mod n:
%p A341409 seq(a(n), n=1..100);  # _Alois P. Heinz_, Feb 11 2021
%t A341409 a[n_] := Mod[Sum[k^n, {k, 1, 3}], n]; Array[a, 100] (* _Amiram Eldar_, Feb 11 2021 *)
%o A341409 (PARI) a(n) = sum(k=1, 3, k^n)%n;
%Y A341409 (Sum_{k=1..m} k^n) mod n: A096196 (m=2), this sequence (m=3), A341410 (m=4), A341411 (m=5), A341412 (m=6), A341413 (m=7).
%Y A341409 Cf. A001550, A045576, A056645, A220235.
%K A341409 nonn,easy
%O A341409 1,4
%A A341409 _Seiichi Manyama_, Feb 11 2021