cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341410 a(n) = (Sum_{k=1..4} k^n) mod n.

This page as a plain text file.
%I A341410 #14 Feb 10 2023 14:29:00
%S A341410 0,0,1,2,0,0,3,2,1,0,10,6,10,2,10,2,10,12,10,14,16,8,10,18,0,4,1,18,
%T A341410 10,0,10,2,1,30,5,30,10,30,22,34,10,18,10,2,10,30,10,18,31,0,49,42,10,
%U A341410 30,35,2,43,30,10,54,10,30,37,2,0,6,10,14,31,60,10,66,10,30
%N A341410 a(n) = (Sum_{k=1..4} k^n) mod n.
%H A341410 Seiichi Manyama, <a href="/A341410/b341410.txt">Table of n, a(n) for n = 1..10000</a>
%F A341410 a(n) = A001551(n) mod n.
%F A341410 a(A056643(n)) = 0.
%p A341410 a:= n-> add(i&^n, i=1..4) mod n:
%p A341410 seq(a(n), n=1..100);  # _Alois P. Heinz_, Feb 11 2021
%t A341410 a[n_] := Mod[Sum[k^n, {k, 1, 4}], n]; Array[a, 100] (* _Amiram Eldar_, Feb 11 2021 *)
%o A341410 (PARI) a(n) = sum(k=1, 4, k^n)%n;
%Y A341410 (Sum_{k=1..m} k^n) mod n: A096196 (m=2), A341409 (m=3), this sequence (m=4), A341411 (m=5), A341412 (m=6), A341413 (m=7).
%Y A341410 Cf. A001551, A056643.
%K A341410 nonn,easy
%O A341410 1,4
%A A341410 _Seiichi Manyama_, Feb 11 2021