cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341411 a(n) = (Sum_{k=1..5} k^n) mod n.

This page as a plain text file.
%I A341411 #14 Feb 10 2023 14:28:56
%S A341411 0,1,0,3,0,1,1,3,0,5,4,7,2,13,0,3,15,13,15,19,15,11,15,19,0,3,0,27,15,
%T A341411 25,15,3,27,21,15,31,15,17,30,19,15,19,15,11,0,9,15,19,1,25,21,43,15,
%U A341411 31,25,27,54,55,15,19,15,55,36,3,5,55,15,27,18,55,15,67,15,55
%N A341411 a(n) = (Sum_{k=1..5} k^n) mod n.
%H A341411 Seiichi Manyama, <a href="/A341411/b341411.txt">Table of n, a(n) for n = 1..10000</a>
%F A341411 a(n) = A001552(n) mod n.
%F A341411 a(A056741(n)) = 0.
%p A341411 a:= n-> add(i&^n, i=1..5) mod n:
%p A341411 seq(a(n), n=1..100);  # _Alois P. Heinz_, Feb 11 2021
%t A341411 a[n_] := Mod[Sum[k^n, {k, 1, 5}], n]; Array[a, 100] (* _Amiram Eldar_, Feb 11 2021 *)
%o A341411 (PARI) a(n) = sum(k=1, 5, k^n)%n;
%Y A341411 (Sum_{k=1..m} k^n) mod n: A096196 (m=2), A341409 (m=3), A341410 (m=4), this sequence (m=5), A341412 (m=6), A341413 (m=7).
%Y A341411 Cf. A001552, A056741.
%K A341411 nonn,easy
%O A341411 1,4
%A A341411 _Seiichi Manyama_, Feb 11 2021