A341415 Triangle read by rows: T(n,k) is the number of grand Dyck paths of semilength n having degree of symmetry k (n >= 0, 0 <= k <= n).
1, 0, 2, 2, 0, 4, 4, 8, 0, 8, 14, 16, 24, 0, 16, 44, 64, 48, 64, 0, 32, 148, 208, 216, 128, 160, 0, 64, 504, 736, 720, 640, 320, 384, 0, 128, 1750, 2592, 2672, 2176, 1760, 768, 896, 0, 256, 6156, 9280, 9696, 8448, 6080, 4608, 1792, 2048, 0, 512
Offset: 0
Examples
For n=3 there are 4 grand Dyck paths with degree of symmetry equal to 0, namely uddduu, uudddu, duuudd, dduuud. The triangle begins: 1 0 2 2 0 4 4 8 0 8 14 16 24 0 16 44 64 48 64 0 32 148 208 216 128 160 0 64 504 736 720 640 320 384 0 128
Links
- Sergi Elizalde, The degree of symmetry of lattice paths, arXiv:2002.12874 [math.CO], 2020.
- Sergi Elizalde, Measuring symmetry in lattice paths and partitions, Sem. Lothar. Combin. 84B.26, 12 pp (2020).
Formula
G.f.: 1/(2(1-u)z+sqrt(1-4z)).
Comments