cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341415 Triangle read by rows: T(n,k) is the number of grand Dyck paths of semilength n having degree of symmetry k (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 0, 2, 2, 0, 4, 4, 8, 0, 8, 14, 16, 24, 0, 16, 44, 64, 48, 64, 0, 32, 148, 208, 216, 128, 160, 0, 64, 504, 736, 720, 640, 320, 384, 0, 128, 1750, 2592, 2672, 2176, 1760, 768, 896, 0, 256, 6156, 9280, 9696, 8448, 6080, 4608, 1792, 2048, 0, 512
Offset: 0

Views

Author

Sergi Elizalde, Feb 12 2021

Keywords

Comments

The degree of symmetry of a grand Dyck path is defined as the number of steps in the first half that are mirror images of steps in the second half, with respect to the reflection along a vertical line through the midpoint of the path.

Examples

			For n=3 there are 4 grand Dyck paths with degree of symmetry equal to 0, namely uddduu, uudddu, duuudd, dduuud.
The triangle begins:
    1
    0    2
    2    0    4
    4    8    0    8
   14   16   24    0   16
   44   64   48   64    0   32
  148  208  216  128  160    0  64
  504  736  720  640  320  384   0  128
		

Crossrefs

Cf. A000079 (diagonal), A000984 (row sums).

Formula

G.f.: 1/(2(1-u)z+sqrt(1-4z)).