A341416 a(n) is the least k such that the product of indices of unitary prime power divisors of k is n.
1, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 35, 36, 47, 49, 40, 59, 61, 52, 45, 71, 56, 79, 55, 68, 89, 63, 65, 103, 107, 92, 77, 121, 72, 127, 85, 91, 137, 139, 88, 151, 112, 124, 115, 169, 104, 119, 99, 148, 193, 197, 133, 211, 223, 117, 145, 161, 136, 241, 155, 196
Offset: 1
Examples
a(3) = 4 because A333235(4) = 3 and this is the first occurrence of 3 in A333235.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # for a(1) to a(A025528(N)) R:= NULL: p:= 2: while p < N do R:= R, seq(p^k,k=1..ilog[p](N)); p:= nextprime(p); od: L:= sort([R]): M:= nops(L): f:= proc(n) local F, t; F:= ifactors(n)[2]; mul(ListTools:-BinarySearch(L,t[1]^t[2]),t=F) end proc: V:= Vector(M): count:= 0: for n from 1 while count < M do v:= f(n); if v <= M and V[v] = 0 then count:= count+1; V[v]:= n fi; od: convert(V,list);
Formula
A333235(a(n)) = n.
Comments