A341418 Triangle read by rows: T(n, m) gives the sum of the weights of weighted compositions of n with m parts from generalized pentagonal numbers {A001318(k)}_{k>=1}.
1, 1, 1, 0, 2, 1, 0, 1, 3, 1, -1, 0, 3, 4, 1, 0, -2, 1, 6, 5, 1, -1, -2, -3, 4, 10, 6, 1, 0, -2, -6, -3, 10, 15, 7, 1, 0, -2, -6, -12, 0, 20, 21, 8, 1, 0, 1, -6, -16, -19, 9, 35, 28, 9, 1, 0, 0, 0, -16, -35, -24, 28, 56, 36, 10, 1, 1, 2, 3, -6, -40, -65, -21, 62, 84, 45, 11, 1
Offset: 1
Examples
The triangle T(n, m) begins: n\m 1 2 3 4 5 6 7 8 9 10 11 12 ... A000041 -------------------------------------------------------- 1: 1 1 2: 1 1 2 3: 0 2 1 3 4: 0 1 3 1 5 5: -1 0 3 4 1 7 6: 0 -2 1 6 5 1 11 7: -1 -2 -3 4 10 6 1 15 8: 0 -2 -6 -3 10 15 7 1 22 9: 0 -2 -6 -12 0 20 21 8 1 30 10: 0 1 -6 -16 -19 9 35 28 9 1 42 11: 0 0 0 -16 -35 -24 28 56 36 10 1 56 12: 1 2 3 -6 -40 -65 -21 62 84 45 11 1 77 ... For instance the case n = 6: The relevant weighted partitions with parts from the pentagonal numbers and number of compositions are: m = 2: 2*(1,-5) = -2*(1,5), m = 3: 1*(2^3), m = 4: 3*(1^2,2^2), m = 5: 1*(1^4,2), m = 6: 1*(1^6). The other partitions have weight 0.
Links
- Wikipedia, Pentagonal number theorem.
Crossrefs
Programs
-
Maple
# Using function PMatrix from A357368. Adds a row and a column for n, m = 0. PMatrix(14, proc(n) 24*n+1; if issqr(%) then sqrt(%); -(-1)^irem(iquo(%+irem(%,6),6),2) else 0 fi end); # Peter Luschny, Oct 06 2022
-
Mathematica
nmax = 12; col[m_] := col[m] = (-(Product[(1-x^j), {j, 1, nmax}]-1))^m // CoefficientList[#, x]&; T[n_, m_] := col[m][[n+1]]; Table[T[n, m], {n, 1, nmax}, {m, 1, n}] // Flatten (* Jean-François Alcover, Oct 23 2023 *)
Formula
T(n, m) = Sum_{j=1..p(n,m)} w(Part(n, m, j))*M0(n, m, j), where p(n, m) = A008284(n, m), M0(n, m, j) are the multinomials from A048996, i.e., m!/Prod_{k=1..m} e(n,m,j,k)! with the exponents of the parts, and the ternary weight of the j-th partition of n with m parts Part(n,m,j), in Abramowitz-Stegun order, is defined as the product of the weights of the parts, using w(n) = -A010815(n), for n >= 1, and m = 1, 2, ..., n.
From Wolfdieter Lang, Feb 16 2021: (Start)
G.f. column m: G(m, x) = ( -(Product_{j>=1} (1 - x^j) - 1) )^m, for m >= 1.
G.f. of row polynomials R(n, x) = Sum_{m=1..n}, that is g. f. of the triangle:
GfT(z, x) = 1/(1 - x*G(1, z)) - 1. Riordan triangle (without m = 0 column). (End)
Comments