This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341419 #37 Mar 29 2021 12:56:15 %S A341419 1,1,2,0,4,2,0,-2,8,6,8,-2,0,-2,-8,-2,16,14,24,-2,32,14,-8,-18,0,-2, %T A341419 -8,-2,-32,-18,-8,14,32,30,56,-2,96,46,-8,-50,128,94,120,-34,-32,-50, %U A341419 -136,-18,0,-2,-8,-2,-32,-18,-8,14,-128,-98,-136,30,-32,14,120,46,64,62 %N A341419 a(0) = 1, a(1) = 1, a(2^(n-1)..2^n-1) = fwht(0..2^(n-2)). Here "fwht" is the fast Walsh-Hadamard transform with natural ordering and without multiplication of any factors. %C A341419 This sequence is a rough integer-valued approximation to one of the nontrivial solutions to f(n) = a*fwht(f(n)). %H A341419 Thomas Scheuerle, <a href="/A341419/b341419.txt">Table of n, a(n) for n = 0..16383</a> %F A341419 a(2^n) = 2^n. %F A341419 a(2^n + 1) = 2^n-2 for n > 0. %F A341419 a(2^n + 2) = 8*(2^(n-2) - 1) = A159741(n-2) for n > 1. %F A341419 a(2^n + 3) = -2 for n > 1. %F A341419 a(2^n + 4) = 32*(2^(n-3) - 1) = A175165(n-3) for n > 2. %F A341419 a(2^n + 5) = 2*(2^n - 9) for n > 2. %F A341419 a(2^n + 6) = -8 for n > 2. %F A341419 a(2^n + 7) = -2*(8 * 2^(n-3) - 7) for n > 2. %F A341419 a(2^n + 8) = 64*(2^(n-3) - 2) for n > 3. %o A341419 (MATLAB) %o A341419 function a = A341419(max_n) %o A341419 a(1) = 1; %o A341419 a(2) = 1; %o A341419 while length(a) < max_n %o A341419 w = fwht(a,[],'hadamard')*length(a); %o A341419 %w = myfwht(a); % own implementation for documentation purpose %o A341419 a = [a w]; %o A341419 end %o A341419 end %o A341419 function w = myfwht(in) %o A341419 h = 1; %o A341419 while h < length(in) %o A341419 for i = 1:h*2:length(in) %o A341419 for j = i:i+h-1 %o A341419 x = in(j); %o A341419 y = in(j+h); %o A341419 in(j) = x+y; %o A341419 in(j+h) = x-y; %o A341419 end %o A341419 end %o A341419 h = h*2; %o A341419 end %o A341419 w = in; %o A341419 end %Y A341419 Cf. A159741, A175165. %K A341419 sign,look %O A341419 0,3 %A A341419 _Thomas Scheuerle_, Mar 24 2021