cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341420 The positive integer numbers k represented properly by the binary quadratic form x^2 + 4*y^2.

Original entry on oeis.org

1, 4, 5, 8, 13, 17, 20, 25, 29, 37, 40, 41, 52, 53, 61, 65, 68, 73, 85, 89, 97, 100, 101, 104, 109, 113, 116, 125, 136, 137, 145, 148, 149, 157, 164, 169, 173, 181, 185, 193, 197, 200, 205, 212, 221, 229, 232, 233, 241, 244, 257, 260, 265, 269, 277, 281, 289, 292, 293, 296
Offset: 1

Views

Author

Wolfdieter Lang, Mar 19 2021

Keywords

Comments

If also improper solutions of the Diophantine equation X^2 + Y^2 = k, with positive integer number k are taken into account one can obtain the present solutions provided X or Y are even. E.g., k = 4 has only improper solutions like (X, Y) = (0, pm2) or (pm2, 0) (pm stands for +1 or -1). So 4 is not a member of A008784, but in the present sequence it appears from (x, y) = (0, pm1) obtained from the first (X, Y) solution by y = Y/2.
The number k = 2 = A008784(2) is not represented here because there is only the proper solution (X, Y) = (pm1, pm1).
The number of solutions m(k = a(n)), up to an overall sign change in x and y, is given by m(1) = 1, m(4) = 1, m(8) = 2 and for k = 4^a*8^b*Product_{j=1..P1} (p1_j)^e1_j, with (a,b) from {(0, 0), (1, 0), (0, 1)}}, primes p1_j congruent to 1 (mod 4) (from A002144) and nonnegative exponents e1_j, it is m(k) = 2^(b + P1).
The primitive parallel binary quadratic forms of discriminant -16 = -4*4 representing positive integer numbers k are obtained by solving the Diophantine equation j^2 + 4 == 0 (mod k), for j from {0, 1, ..., k-1}. This gives for k = 1, 2, 4, and 8 the solutions j = 0, 0, {0, 2}, and {2, 6}, respectively. No larger powers of 2 have solutions. No lifting is possible (see Apostol, Theorem 5.30). For odd primes k the Legendre symbol (-4, k) = +1 exactly for k = prime == 1 (mod 4) (from the Legendre symbol (-1, prime) = +1 only for these primes A008784).
These parallel forms are given by (k, 2*j(k), c(j(k))), with c(j(k)) = (j(k)^2 + 4)/k.
There is only one primitive reduced form for discriminant -16, namely the principal form (1, 0, 4) (see the Buell reference p. 20). Thus each parallel form is equivalent (with a determinant +1 transformation) to this principal form, and gives a proper solution.

Examples

			Proper solutions (x, y) (up to overall sign flip) for various k = a(n):
a(2) = 4: (1, 0), m(4) = 1 (a = 1, b = 0, P1 = 0), (2, 0) is not a proper solution);
a(4) = 8: (2, pm1): (pm stands for +1 or -1), m(8) = 2 (a = 0, b = 1, P1 = 0);
a(7) = 20 = 4*5: (4, pm1), m(20) = 2 (a = 1, b = 0, P1 = 1), (m(4) = 1);
a(8) = 25 = 5^2: (3, pm2), m(25) = 2 (a = 0, b = 0, P1 = 1);
a(42) = 200 = 8*5^2: (2, pm7), (14, pm1), m(200) = 4 (a = 0, b = 1, P1 = 1).
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 120-122.
  • D. A. Buell, Binary Quadratic Forms, Springer, 1989, p. 20.

Crossrefs

Cf. Discriminants -4: A008784, -8 A057127, -12 A244819.

Formula

a(n) = x(n)^2 + (2*y(n))^2, with gcd(x(n), y(n)) = 1, for n >= 1.