A341420 The positive integer numbers k represented properly by the binary quadratic form x^2 + 4*y^2.
1, 4, 5, 8, 13, 17, 20, 25, 29, 37, 40, 41, 52, 53, 61, 65, 68, 73, 85, 89, 97, 100, 101, 104, 109, 113, 116, 125, 136, 137, 145, 148, 149, 157, 164, 169, 173, 181, 185, 193, 197, 200, 205, 212, 221, 229, 232, 233, 241, 244, 257, 260, 265, 269, 277, 281, 289, 292, 293, 296
Offset: 1
Keywords
Examples
Proper solutions (x, y) (up to overall sign flip) for various k = a(n): a(2) = 4: (1, 0), m(4) = 1 (a = 1, b = 0, P1 = 0), (2, 0) is not a proper solution); a(4) = 8: (2, pm1): (pm stands for +1 or -1), m(8) = 2 (a = 0, b = 1, P1 = 0); a(7) = 20 = 4*5: (4, pm1), m(20) = 2 (a = 1, b = 0, P1 = 1), (m(4) = 1); a(8) = 25 = 5^2: (3, pm2), m(25) = 2 (a = 0, b = 0, P1 = 1); a(42) = 200 = 8*5^2: (2, pm7), (14, pm1), m(200) = 4 (a = 0, b = 1, P1 = 1).
References
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 120-122.
- D. A. Buell, Binary Quadratic Forms, Springer, 1989, p. 20.
Formula
a(n) = x(n)^2 + (2*y(n))^2, with gcd(x(n), y(n)) = 1, for n >= 1.
Comments