cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341433 Numbers that are divisible by the product of their digits in primorial base representation.

Original entry on oeis.org

1, 3, 9, 21, 39, 51, 99, 249, 261, 309, 669, 729, 2559, 2571, 2619, 2979, 3051, 4239, 7179, 7191, 32589, 32601, 32649, 32661, 33009, 33021, 37209, 37269, 37629, 51489, 92649, 92709, 93069, 97281, 272889, 274509, 543099, 543111, 543159, 543519, 543591, 544779
Offset: 1

Views

Author

Amiram Eldar, Feb 11 2021

Keywords

Comments

The primorial base repunits (A143293) are all terms since their product of digits in primorial base is 1.
All the terms are zeroless in primorial base, and therefore they are terms of A328574. In particular, since the last digit of even numbers in primorial base is 0, all the terms are odd numbers.

Examples

			9 is a term since 9 in primorial base is 111 (9 = 3! + 2! + 1!) and 9 is divisible by 1*1*1 = 1.
		

Crossrefs

A143293 is a subsequence.
Subsequence of A328574.

Programs

  • Mathematica
    max = 12; bases = Prime@Range[max, 1, -1]; nmax = Times @@ bases - 1; q[n_] := FreeQ[(d = IntegerDigits[n, MixedRadix[bases]]), 0] && Divisible[n, Times @@ d]; Select[Range[1, 10^5, 2], q]