cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341446 Heinz numbers of integer partitions whose only odd part is the smallest.

This page as a plain text file.
%I A341446 #17 Mar 07 2021 19:05:04
%S A341446 2,5,6,11,14,17,18,23,26,31,35,38,41,42,47,54,58,59,65,67,73,74,78,83,
%T A341446 86,95,97,98,103,106,109,114,122,126,127,137,142,143,145,149,157,158,
%U A341446 162,167,174,178,179,182,185,191,197,202,209,211,214,215,222,226
%N A341446 Heinz numbers of integer partitions whose only odd part is the smallest.
%C A341446 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose only odd prime index (counting multiplicity) is the smallest.
%F A341446 Also numbers n > 1 such that A055396(n) is odd and A032742(n) belongs to A066207.
%e A341446 The sequence of partitions together with their Heinz numbers begins:
%e A341446       2: (1)         54: (2,2,2,1)    109: (29)
%e A341446       5: (3)         58: (10,1)       114: (8,2,1)
%e A341446       6: (2,1)       59: (17)         122: (18,1)
%e A341446      11: (5)         65: (6,3)        126: (4,2,2,1)
%e A341446      14: (4,1)       67: (19)         127: (31)
%e A341446      17: (7)         73: (21)         137: (33)
%e A341446      18: (2,2,1)     74: (12,1)       142: (20,1)
%e A341446      23: (9)         78: (6,2,1)      143: (6,5)
%e A341446      26: (6,1)       83: (23)         145: (10,3)
%e A341446      31: (11)        86: (14,1)       149: (35)
%e A341446      35: (4,3)       95: (8,3)        157: (37)
%e A341446      38: (8,1)       97: (25)         158: (22,1)
%e A341446      41: (13)        98: (4,4,1)      162: (2,2,2,2,1)
%e A341446      42: (4,2,1)    103: (27)         167: (39)
%e A341446      47: (15)       106: (16,1)       174: (10,2,1)
%t A341446 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A341446 Select[Range[2,100],OddQ[First[primeMS[#]]]&&And@@EvenQ[Rest[primeMS[#]]]&]
%Y A341446 These partitions are counted by A035363 (shifted left once).
%Y A341446 Terms of A340932 can be factored into elements of this sequence.
%Y A341446 The even version is A341447.
%Y A341446 A001222 counts prime factors.
%Y A341446 A005408 lists odd numbers.
%Y A341446 A026804 counts partitions whose smallest part is odd.
%Y A341446 A027193 counts odd-length partitions, ranked by A026424.
%Y A341446 A031368 lists odd-indexed primes.
%Y A341446 A032742 selects largest proper divisor.
%Y A341446 A055396 selects smallest prime index.
%Y A341446 A056239 adds up prime indices.
%Y A341446 A058695 counts partitions of odd numbers, ranked by A300063.
%Y A341446 A061395 selects largest prime index.
%Y A341446 A066207 lists numbers with all even prime indices.
%Y A341446 A066208 lists numbers with all odd prime indices.
%Y A341446 A112798 lists the prime indices of each positive integer.
%Y A341446 A244991 lists numbers whose greatest prime index is odd.
%Y A341446 A340932 lists numbers whose smallest prime index is odd.
%Y A341446 Cf. A006141, A160786, A257991, A257992, A300272, A340604, A340607, A340854/A340855, A340933.
%K A341446 nonn
%O A341446 1,1
%A A341446 _Gus Wiseman_, Feb 12 2021