cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341447 Heinz numbers of integer partitions whose only even part is the smallest.

This page as a plain text file.
%I A341447 #13 Feb 14 2021 13:14:23
%S A341447 3,7,13,15,19,29,33,37,43,51,53,61,69,71,75,77,79,89,93,101,107,113,
%T A341447 119,123,131,139,141,151,161,163,165,173,177,181,193,199,201,217,219,
%U A341447 221,223,229,239,249,251,255,263,271,281,287,291,293,299,309,311,317
%N A341447 Heinz numbers of integer partitions whose only even part is the smallest.
%C A341447 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose only even prime index (counting multiplicity) is the smallest.
%e A341447 The sequence of partitions together with their Heinz numbers begins:
%e A341447       3: (2)         77: (5,4)     165: (5,3,2)
%e A341447       7: (4)         79: (22)      173: (40)
%e A341447      13: (6)         89: (24)      177: (17,2)
%e A341447      15: (3,2)       93: (11,2)    181: (42)
%e A341447      19: (8)        101: (26)      193: (44)
%e A341447      29: (10)       107: (28)      199: (46)
%e A341447      33: (5,2)      113: (30)      201: (19,2)
%e A341447      37: (12)       119: (7,4)     217: (11,4)
%e A341447      43: (14)       123: (13,2)    219: (21,2)
%e A341447      51: (7,2)      131: (32)      221: (7,6)
%e A341447      53: (16)       139: (34)      223: (48)
%e A341447      61: (18)       141: (15,2)    229: (50)
%e A341447      69: (9,2)      151: (36)      239: (52)
%e A341447      71: (20)       161: (9,4)     249: (23,2)
%e A341447      75: (3,3,2)    163: (38)      251: (54)
%t A341447 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A341447 Select[Range[2,100],EvenQ[First[primeMS[#]]]&&And@@OddQ[Rest[primeMS[#]]]&]
%Y A341447 These partitions are counted by A087897, shifted left once.
%Y A341447 Terms of A340933 can be factored into elements of this sequence.
%Y A341447 The odd version is A341446.
%Y A341447 A000009 counts partitions into odd parts, ranked by A066208.
%Y A341447 A001222 counts prime factors.
%Y A341447 A005843 lists even numbers.
%Y A341447 A026804 counts partitions whose least part is odd, ranked by A340932.
%Y A341447 A026805 counts partitions whose least part is even, ranked by A340933.
%Y A341447 A027187 counts partitions with even length/max, ranked by A028260/A244990.
%Y A341447 A031215 lists even-indexed primes.
%Y A341447 A055396 selects least prime index.
%Y A341447 A056239 adds up prime indices.
%Y A341447 A058696 counts partitions of even numbers, ranked by A300061.
%Y A341447 A061395 selects greatest prime index.
%Y A341447 A066207 lists numbers with all even prime indices.
%Y A341447 A112798 lists the prime indices of each positive integer.
%Y A341447 Cf. A026804, A035363, A036554, A160786, A244991, A257991, A257992, A300272, A300063, A340854/A340855.
%K A341447 nonn
%O A341447 1,1
%A A341447 _Gus Wiseman_, Feb 13 2021