This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341447 #13 Feb 14 2021 13:14:23 %S A341447 3,7,13,15,19,29,33,37,43,51,53,61,69,71,75,77,79,89,93,101,107,113, %T A341447 119,123,131,139,141,151,161,163,165,173,177,181,193,199,201,217,219, %U A341447 221,223,229,239,249,251,255,263,271,281,287,291,293,299,309,311,317 %N A341447 Heinz numbers of integer partitions whose only even part is the smallest. %C A341447 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose only even prime index (counting multiplicity) is the smallest. %e A341447 The sequence of partitions together with their Heinz numbers begins: %e A341447 3: (2) 77: (5,4) 165: (5,3,2) %e A341447 7: (4) 79: (22) 173: (40) %e A341447 13: (6) 89: (24) 177: (17,2) %e A341447 15: (3,2) 93: (11,2) 181: (42) %e A341447 19: (8) 101: (26) 193: (44) %e A341447 29: (10) 107: (28) 199: (46) %e A341447 33: (5,2) 113: (30) 201: (19,2) %e A341447 37: (12) 119: (7,4) 217: (11,4) %e A341447 43: (14) 123: (13,2) 219: (21,2) %e A341447 51: (7,2) 131: (32) 221: (7,6) %e A341447 53: (16) 139: (34) 223: (48) %e A341447 61: (18) 141: (15,2) 229: (50) %e A341447 69: (9,2) 151: (36) 239: (52) %e A341447 71: (20) 161: (9,4) 249: (23,2) %e A341447 75: (3,3,2) 163: (38) 251: (54) %t A341447 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A341447 Select[Range[2,100],EvenQ[First[primeMS[#]]]&&And@@OddQ[Rest[primeMS[#]]]&] %Y A341447 These partitions are counted by A087897, shifted left once. %Y A341447 Terms of A340933 can be factored into elements of this sequence. %Y A341447 The odd version is A341446. %Y A341447 A000009 counts partitions into odd parts, ranked by A066208. %Y A341447 A001222 counts prime factors. %Y A341447 A005843 lists even numbers. %Y A341447 A026804 counts partitions whose least part is odd, ranked by A340932. %Y A341447 A026805 counts partitions whose least part is even, ranked by A340933. %Y A341447 A027187 counts partitions with even length/max, ranked by A028260/A244990. %Y A341447 A031215 lists even-indexed primes. %Y A341447 A055396 selects least prime index. %Y A341447 A056239 adds up prime indices. %Y A341447 A058696 counts partitions of even numbers, ranked by A300061. %Y A341447 A061395 selects greatest prime index. %Y A341447 A066207 lists numbers with all even prime indices. %Y A341447 A112798 lists the prime indices of each positive integer. %Y A341447 Cf. A026804, A035363, A036554, A160786, A244991, A257991, A257992, A300272, A300063, A340854/A340855. %K A341447 nonn %O A341447 1,1 %A A341447 _Gus Wiseman_, Feb 13 2021