cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341448 Heinz numbers of integer partitions of type OO.

This page as a plain text file.
%I A341448 #7 Feb 16 2021 09:35:37
%S A341448 6,14,15,24,26,33,35,38,51,54,56,58,60,65,69,74,77,86,93,95,96,104,
%T A341448 106,119,122,123,126,132,135,140,141,142,143,145,150,152,158,161,177,
%U A341448 178,185,201,202,204,209,214,215,216,217,219,221,224,226,232,234,240
%N A341448 Heinz numbers of integer partitions of type OO.
%C A341448 These partitions are defined to have an odd number of odd parts and an odd number of even parts. They also have even length and odd sum.
%e A341448 The sequence of partitions together with their Heinz numbers begins:
%e A341448       6: (2,1)         74: (12,1)           141: (15,2)
%e A341448      14: (4,1)         77: (5,4)            142: (20,1)
%e A341448      15: (3,2)         86: (14,1)           143: (6,5)
%e A341448      24: (2,1,1,1)     93: (11,2)           145: (10,3)
%e A341448      26: (6,1)         95: (8,3)            150: (3,3,2,1)
%e A341448      33: (5,2)         96: (2,1,1,1,1,1)    152: (8,1,1,1)
%e A341448      35: (4,3)        104: (6,1,1,1)        158: (22,1)
%e A341448      38: (8,1)        106: (16,1)           161: (9,4)
%e A341448      51: (7,2)        119: (7,4)            177: (17,2)
%e A341448      54: (2,2,2,1)    122: (18,1)           178: (24,1)
%e A341448      56: (4,1,1,1)    123: (13,2)           185: (12,3)
%e A341448      58: (10,1)       126: (4,2,2,1)        201: (19,2)
%e A341448      60: (3,2,1,1)    132: (5,2,1,1)        202: (26,1)
%e A341448      65: (6,3)        135: (3,2,2,2)        204: (7,2,1,1)
%e A341448      69: (9,2)        140: (4,3,1,1)        209: (8,5)
%t A341448 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A341448 Select[Range[100],OddQ[Count[primeMS[#],_?EvenQ]]&&OddQ[Count[primeMS[#],_?OddQ]]&]
%Y A341448 Note: A-numbers of ranking sequences are in parentheses below.
%Y A341448 The case of odd parts, length, and sum is counted by A078408 (A300272).
%Y A341448 The type EE version is A236913 (A340784).
%Y A341448 These partitions (for odd n) are counted by A236914.
%Y A341448 A000009 counts partitions into odd parts (A066208).
%Y A341448 A026804 counts partitions whose least part is odd (A340932).
%Y A341448 A027193 counts partitions of odd length/maximum (A026424/A244991).
%Y A341448 A058695 counts partitions of odd numbers (A300063).
%Y A341448 A160786 counts odd-length partitions of odd numbers (A340931).
%Y A341448 A340101 counts factorizations into odd factors.
%Y A341448 A340385 counts partitions of odd length and maximum (A340386).
%Y A341448 A340601 counts partitions of even rank (A340602).
%Y A341448 A340692 counts partitions of odd rank (A340603).
%Y A341448 Cf. A000700, A024429, A027187, A106529, A117409, A174725, A257541, A325134, A339890, A340102, A340604.
%K A341448 nonn
%O A341448 1,1
%A A341448 _Gus Wiseman_, Feb 15 2021