This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341448 #7 Feb 16 2021 09:35:37 %S A341448 6,14,15,24,26,33,35,38,51,54,56,58,60,65,69,74,77,86,93,95,96,104, %T A341448 106,119,122,123,126,132,135,140,141,142,143,145,150,152,158,161,177, %U A341448 178,185,201,202,204,209,214,215,216,217,219,221,224,226,232,234,240 %N A341448 Heinz numbers of integer partitions of type OO. %C A341448 These partitions are defined to have an odd number of odd parts and an odd number of even parts. They also have even length and odd sum. %e A341448 The sequence of partitions together with their Heinz numbers begins: %e A341448 6: (2,1) 74: (12,1) 141: (15,2) %e A341448 14: (4,1) 77: (5,4) 142: (20,1) %e A341448 15: (3,2) 86: (14,1) 143: (6,5) %e A341448 24: (2,1,1,1) 93: (11,2) 145: (10,3) %e A341448 26: (6,1) 95: (8,3) 150: (3,3,2,1) %e A341448 33: (5,2) 96: (2,1,1,1,1,1) 152: (8,1,1,1) %e A341448 35: (4,3) 104: (6,1,1,1) 158: (22,1) %e A341448 38: (8,1) 106: (16,1) 161: (9,4) %e A341448 51: (7,2) 119: (7,4) 177: (17,2) %e A341448 54: (2,2,2,1) 122: (18,1) 178: (24,1) %e A341448 56: (4,1,1,1) 123: (13,2) 185: (12,3) %e A341448 58: (10,1) 126: (4,2,2,1) 201: (19,2) %e A341448 60: (3,2,1,1) 132: (5,2,1,1) 202: (26,1) %e A341448 65: (6,3) 135: (3,2,2,2) 204: (7,2,1,1) %e A341448 69: (9,2) 140: (4,3,1,1) 209: (8,5) %t A341448 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A341448 Select[Range[100],OddQ[Count[primeMS[#],_?EvenQ]]&&OddQ[Count[primeMS[#],_?OddQ]]&] %Y A341448 Note: A-numbers of ranking sequences are in parentheses below. %Y A341448 The case of odd parts, length, and sum is counted by A078408 (A300272). %Y A341448 The type EE version is A236913 (A340784). %Y A341448 These partitions (for odd n) are counted by A236914. %Y A341448 A000009 counts partitions into odd parts (A066208). %Y A341448 A026804 counts partitions whose least part is odd (A340932). %Y A341448 A027193 counts partitions of odd length/maximum (A026424/A244991). %Y A341448 A058695 counts partitions of odd numbers (A300063). %Y A341448 A160786 counts odd-length partitions of odd numbers (A340931). %Y A341448 A340101 counts factorizations into odd factors. %Y A341448 A340385 counts partitions of odd length and maximum (A340386). %Y A341448 A340601 counts partitions of even rank (A340602). %Y A341448 A340692 counts partitions of odd rank (A340603). %Y A341448 Cf. A000700, A024429, A027187, A106529, A117409, A174725, A257541, A325134, A339890, A340102, A340604. %K A341448 nonn %O A341448 1,1 %A A341448 _Gus Wiseman_, Feb 15 2021