cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341449 Heinz numbers of integer partitions into odd parts > 1.

This page as a plain text file.
%I A341449 #10 Feb 16 2021 09:35:43
%S A341449 1,5,11,17,23,25,31,41,47,55,59,67,73,83,85,97,103,109,115,121,125,
%T A341449 127,137,149,155,157,167,179,187,191,197,205,211,227,233,235,241,253,
%U A341449 257,269,275,277,283,289,295,307,313,331,335,341,347,353,365,367,379,389
%N A341449 Heinz numbers of integer partitions into odd parts > 1.
%C A341449 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%e A341449 The sequence of partitions together with their Heinz numbers begins:
%e A341449       1: ()        97: (25)       197: (45)       307: (63)
%e A341449       5: (3)      103: (27)       205: (13,3)     313: (65)
%e A341449      11: (5)      109: (29)       211: (47)       331: (67)
%e A341449      17: (7)      115: (9,3)      227: (49)       335: (19,3)
%e A341449      23: (9)      121: (5,5)      233: (51)       341: (11,5)
%e A341449      25: (3,3)    125: (3,3,3)    235: (15,3)     347: (69)
%e A341449      31: (11)     127: (31)       241: (53)       353: (71)
%e A341449      41: (13)     137: (33)       253: (9,5)      365: (21,3)
%e A341449      47: (15)     149: (35)       257: (55)       367: (73)
%e A341449      55: (5,3)    155: (11,3)     269: (57)       379: (75)
%e A341449      59: (17)     157: (37)       275: (5,3,3)    389: (77)
%e A341449      67: (19)     167: (39)       277: (59)       391: (9,7)
%e A341449      73: (21)     179: (41)       283: (61)       401: (79)
%e A341449      83: (23)     187: (7,5)      289: (7,7)      415: (23,3)
%e A341449      85: (7,3)    191: (43)       295: (17,3)     419: (81)
%t A341449 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A341449 Select[Range[100],OddQ[#]&&OddQ[Times@@primeMS[#]]&]
%Y A341449 Note: A-numbers of ranking sequences are in parentheses below.
%Y A341449 Partitions with no ones are A002865 (A005408).
%Y A341449 The case of even parts is A035363 (A066207).
%Y A341449 These partitions are counted by A087897.
%Y A341449 The version for factorizations is A340101.
%Y A341449 A000009 counts partitions into odd parts (A066208).
%Y A341449 A001222 counts prime factors.
%Y A341449 A027193 counts partitions of odd length/maximum (A026424/A244991).
%Y A341449 A056239 adds up prime indices.
%Y A341449 A078408 counts partitions with odd parts, length, and sum (A300272).
%Y A341449 A112798 lists the prime indices of each positive integer.
%Y A341449 A257991/A257992 count odd/even prime indices.
%Y A341449 Cf. A026804 (A340932), A160786 (A340931), A340386, A340604, A340607, A340785, A340854/A340855, A341446.
%K A341449 nonn
%O A341449 1,2
%A A341449 _Gus Wiseman_, Feb 15 2021