This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341449 #10 Feb 16 2021 09:35:43 %S A341449 1,5,11,17,23,25,31,41,47,55,59,67,73,83,85,97,103,109,115,121,125, %T A341449 127,137,149,155,157,167,179,187,191,197,205,211,227,233,235,241,253, %U A341449 257,269,275,277,283,289,295,307,313,331,335,341,347,353,365,367,379,389 %N A341449 Heinz numbers of integer partitions into odd parts > 1. %C A341449 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A341449 The sequence of partitions together with their Heinz numbers begins: %e A341449 1: () 97: (25) 197: (45) 307: (63) %e A341449 5: (3) 103: (27) 205: (13,3) 313: (65) %e A341449 11: (5) 109: (29) 211: (47) 331: (67) %e A341449 17: (7) 115: (9,3) 227: (49) 335: (19,3) %e A341449 23: (9) 121: (5,5) 233: (51) 341: (11,5) %e A341449 25: (3,3) 125: (3,3,3) 235: (15,3) 347: (69) %e A341449 31: (11) 127: (31) 241: (53) 353: (71) %e A341449 41: (13) 137: (33) 253: (9,5) 365: (21,3) %e A341449 47: (15) 149: (35) 257: (55) 367: (73) %e A341449 55: (5,3) 155: (11,3) 269: (57) 379: (75) %e A341449 59: (17) 157: (37) 275: (5,3,3) 389: (77) %e A341449 67: (19) 167: (39) 277: (59) 391: (9,7) %e A341449 73: (21) 179: (41) 283: (61) 401: (79) %e A341449 83: (23) 187: (7,5) 289: (7,7) 415: (23,3) %e A341449 85: (7,3) 191: (43) 295: (17,3) 419: (81) %t A341449 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A341449 Select[Range[100],OddQ[#]&&OddQ[Times@@primeMS[#]]&] %Y A341449 Note: A-numbers of ranking sequences are in parentheses below. %Y A341449 Partitions with no ones are A002865 (A005408). %Y A341449 The case of even parts is A035363 (A066207). %Y A341449 These partitions are counted by A087897. %Y A341449 The version for factorizations is A340101. %Y A341449 A000009 counts partitions into odd parts (A066208). %Y A341449 A001222 counts prime factors. %Y A341449 A027193 counts partitions of odd length/maximum (A026424/A244991). %Y A341449 A056239 adds up prime indices. %Y A341449 A078408 counts partitions with odd parts, length, and sum (A300272). %Y A341449 A112798 lists the prime indices of each positive integer. %Y A341449 A257991/A257992 count odd/even prime indices. %Y A341449 Cf. A026804 (A340932), A160786 (A340931), A340386, A340604, A340607, A340785, A340854/A340855, A341446. %K A341449 nonn %O A341449 1,2 %A A341449 _Gus Wiseman_, Feb 15 2021