A341450 Number of strict integer partitions of n that are empty or have smallest part not dividing all the others.
1, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 3, 9, 9, 12, 12, 20, 18, 28, 27, 37, 42, 55, 51, 74, 80, 98, 105, 136, 137, 180, 189, 232, 255, 308, 320, 403, 434, 512, 551, 668, 706, 852, 915, 1067, 1170, 1370, 1453, 1722, 1860, 2145, 2332, 2701, 2899, 3355, 3626, 4144
Offset: 0
Keywords
Examples
The a(0) = 1 through a(15) = 12 strict partitions (empty columns indicated by dots, 0 represents the empty partition, A..D = 10..13): 0 . . . . 32 . 43 53 54 64 65 75 76 86 87 52 72 73 74 543 85 95 96 432 532 83 732 94 A4 B4 92 A3 B3 D2 542 B2 653 654 632 643 743 753 652 752 762 742 932 843 832 5432 852 942 A32 6432
Crossrefs
The non-strict version is A338470.
The case with greatest part not divisible by all others is A343379.
The case with greatest part divisible by all others is A343380.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]
Comments