This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341456 #13 Feb 14 2021 13:04:23 %S A341456 0,1,1,1,1,2,1,1,2,3,2,1,2,1,2,3,3,3,2,3,1,3,2,4,1,3,2,3,4,3,5,3,4,2, %T A341456 4,3,4,1,4,3,2,5,4,5,1,5,3,5,2,5,3,5,4,3,6,5,6,3,6,4,3,2,6,4,3,5,4,7, %U A341456 1,7,4,7,3,4,2,7,5,4,6,5,4,1,8,5,4,3,5 %N A341456 Let T be the set of sequences {t(k), k >= 0} such that for any k >= 3, t(k) = t(k-1) + t(k-2) + t(k-3); a(n) is the least possible value of t(0) + t(1) + t(2) for an element t of T containing n. %C A341456 This sequence is a variant of A249783; here we consider tribonacci-like sequences, there Fibonacci like sequences. The scatterplots of these sequences both present polygonal shapes emerging from the origin. %H A341456 Rémy Sigrist, <a href="/A341456/b341456.txt">Table of n, a(n) for n = 0..10000</a> %H A341456 Rémy Sigrist, <a href="/A341456/a341456.png">Scatterplot of the first 10000000 terms</a> %H A341456 Rémy Sigrist, <a href="/A341456/a341456.gp.txt">PARI program for A341456</a> %F A341456 a(n) = 0 iff n = 0. %F A341456 a(n) = 1 iff n belongs to A213816. %F A341456 a(n) <= n. %e A341456 The first terms of the elements t of T such that t(0) + t(1) + t(2) <= 2 are: %e A341456 t(0)+t(1)+t(2) t(0) t(1) t(2) t(3) t(4) t(5) t(6) t(7) t(8) t(9) %e A341456 -------------- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- %e A341456 0 0 0 0 0 0 0 0 0 0 0 %e A341456 1 0 0 1 1 2 4 7 13 24 44 %e A341456 1 0 1 0 1 2 3 6 11 20 37 %e A341456 1 1 0 0 1 1 2 4 7 13 24 %e A341456 2 0 0 2 2 4 8 14 26 48 88 %e A341456 2 0 1 1 2 4 7 13 24 44 81 %e A341456 2 0 2 0 2 4 6 12 22 40 74 %e A341456 2 1 0 1 2 3 6 11 20 37 68 %e A341456 2 1 1 0 2 3 5 10 18 33 61 %e A341456 2 2 0 0 2 2 4 8 14 26 48 %e A341456 - so a(0) = 0, %e A341456 a(1) = a(2) = a(3) = a(4) = a(6) = a(7) = a(11) = 1, %e A341456 a(5) = = a(8) = a(10) = 2. %o A341456 (PARI) See Links section. %Y A341456 Cf. A000073, A001590, A213816, A249783. %K A341456 nonn %O A341456 0,6 %A A341456 _Rémy Sigrist_, Feb 12 2021