A341285 Let B be the set of sequences of positive integers {b(k), k >= 0} such that for some k > 0 (necessarily unique) and any m >= 0, b(m+k) = b(m) + b(m+1) + ... + b(m+k-1); let g(b) = b(0); a(n) is the least value of g(b) for an element b of B containing n.
1, 2, 2, 3, 2, 4, 3, 2, 3, 4, 3, 4, 2, 4, 5, 4, 3, 3, 5, 6, 2, 6, 4, 4, 4, 4, 5, 5, 3, 5, 3, 5, 5, 2, 6, 6, 4, 4, 6, 6, 6, 4, 7, 4, 5, 7, 3, 7, 4, 5, 5, 6, 5, 8, 2, 6, 3, 6, 7, 4, 5, 6, 5, 5, 5, 6, 7, 4, 6, 4, 6, 6, 5, 8, 6, 3, 4, 6, 6, 6, 4, 8, 5, 7, 7, 6, 7
Offset: 1
Keywords
Examples
The first terms of the elements b of B such that g(b) <= 3 are: g(b) b(0) b(1) b(2) b(3) b(4) b(5) b(6) b(7) b(8) b(9) ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 3 5 8 13 21 34 55 3 3 3 3 3 3 3 3 3 3 3 3 1 2 3 5 8 13 21 34 55 89 3 2 1 3 4 7 11 18 29 47 76 3 1 1 1 3 5 9 17 31 57 105 - so a(1) = 1, a(2) = a(3) = a(5) = a(8) = 2, a(4) = a(7) = a(9) = a(11) = a(17) = a(18) = 3.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, C program for A341285
Programs
-
C
See Links section.
Comments