This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341470 #22 Feb 16 2025 08:34:01 %S A341470 1,1,1,1,3,1,1,5,13,1,1,7,41,63,1,1,9,85,377,321,1,1,11,145,1159,3649, %T A341470 1683,1,1,13,221,2625,16641,36365,8989,1,1,15,313,4991,50049,246047, %U A341470 369305,48639,1,1,17,421,8473,118721,982729,3707509,3800305,265729,1 %N A341470 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} binomial(k*n,n-j) * binomial(k*n+j,j). %H A341470 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DelannoyNumber.html">Delannoy Number</a>. %F A341470 T(n,k) = A008288(n,k*n). %F A341470 T(n,k) = Sum_{j=0..n} 2^j * binomial(n,j) * binomial(k*n,j). %e A341470 Square array begins: %e A341470 1, 1, 1, 1, 1, 1, ... %e A341470 1, 3, 5, 7, 9, 11, ... %e A341470 1, 13, 41, 85, 145, 221, ... %e A341470 1, 63, 377, 1159, 2625, 4991, ... %e A341470 1, 321, 3649, 16641, 50049, 118721, ... %e A341470 1, 1683, 36365, 246047, 982729, 2908411, ... %o A341470 (PARI) T(n, k) = sum(j=0, n, binomial(k*n, n-j)*binomial(k*n+j, j)); %o A341470 (PARI) T(n, k) = sum(j=0, n, 2^j*binomial(n, j)*binomial(k*n, j)); %Y A341470 Columns k=0..5 give A000012, A001850, A026000, A026001, A331329, A341491. %Y A341470 Rows n=0..2 give A000012, A005408, A102083. %Y A341470 Main diagonal gives A181675(n+1). %Y A341470 Cf. A008288. %K A341470 nonn,tabl %O A341470 0,5 %A A341470 _Seiichi Manyama_, Feb 13 2021