A341475 2-near-perfect numbers.
12, 18, 24, 30, 36, 40, 48, 54, 56, 66, 80, 84, 90, 96, 112, 126, 132, 156, 176, 198, 200, 208, 220, 270, 280, 304, 352, 364, 380, 448, 550, 570, 594, 690, 736, 882, 910, 918, 928, 945, 992, 1026, 1040, 1120, 1216, 1372, 1376, 1488, 1638, 1696, 1722, 1782
Offset: 1
Keywords
Examples
48 is 2-near-perfect because its proper divisors are {1, 2, 3, 4, 6, 8, 12, 16, 24} and 48 = 1+2+3+4+6+8+24.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..2000
- Vedant Aryan, Dev Madhavani, Savan Parikh, Ingrid Slattery, and Joshua Zelinsky, On 2-Near Perfect Numbers, arXiv:2310.01305 [math.NT], 2023.
- Hùng Việt Chu, Divisibility of Divisor Functions of Even Perfect Numbers, J. Int. Seq., Vol. 24 (2021), Article 21.3.4.
- Paul Pollack and Vladimir Shevelev, On perfect and near-perfect numbers, J. Number Theory 132 (2012), pp. 3037-3046; also on arXiv, arXiv:1011.6160 [math.NT], 2010-2012.
Programs
-
Python
from sympy import divisors def ok(n): proper_divs = divisors(n)[:-1] s = sum(proper_divs) if s - 3 < n: return False if s - sum(proper_divs[-2:]) > n: return False for i, c1 in enumerate(proper_divs[:-1]): if s - c1 - proper_divs[i+1] < n: return False if s - c1 - n in proper_divs[i+1:]: return True return False def aupto(limit): return [m for m in range(1, limit+1) if ok(m)] print(aupto(1782)) # Michael S. Branicky, Feb 21 2021
Comments