cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341476 Coefficients related to the asymptotics of generalized Delannoy numbers.

This page as a plain text file.
%I A341476 #21 Feb 22 2021 03:31:14
%S A341476 1,3,22,223,2792,42671,761984,15707707,365122688,9491746747,
%T A341476 271962399232,8539383210711,290937486190592,10710312199270503,
%U A341476 422984587596455936,17864076455770831219,802450164859200372736,38242916911507537149427,1925477163696152909447168,102213291475268656299164879
%N A341476 Coefficients related to the asymptotics of generalized Delannoy numbers.
%H A341476 Vaclav Kotesovec, <a href="/A341476/b341476.txt">Table of n, a(n) for n = 1..100</a>
%F A341476 Lim_{n->infinity} (binomial(k*n, n) * hypergeom([(1-k)*n, -n], [-k*n], -1))^(1/n) = (A341476(k) + A341477(k)*sqrt((k-1)^2 + 1)) / (k-1)^(k-1), for k>1.
%F A341476 Lim_{n->infinity} hypergeom([(1-k)*n, -n], [-k*n], -1)^(1/n) = (A341476(k) + A341477(k)*sqrt((k-1)^2 + 1)) / k^k.
%F A341476 For k > 1, A341476(k)^2 - ((k-1)^2 + 1) * A341477(k)^2 = (-1)^k * (k-1)^(2*k-2).
%F A341476 Lim_{k->infinity} (A341476(k) + A341477(k)*sqrt((k-1)^2 + 1)) / (k * (k-1)^(k-1)) = 2*exp(1).
%F A341476 a(n) ~ n^n.
%e A341476 Lim_{n->infinity} A001850(n)^(1/n) = (    3 +    2 * sqrt(1^2 + 1)) / 1^1.
%e A341476 Lim_{n->infinity} A026000(n)^(1/n) = (   22 +   10 * sqrt(2^2 + 1)) / 2^2.
%e A341476 Lim_{n->infinity} A026001(n)^(1/n) = (  223 +   70 * sqrt(3^2 + 1)) / 3^3.
%e A341476 Lim_{n->infinity} A331329(n)^(1/n) = ( 2792 +  680 * sqrt(4^2 + 1)) / 4^4.
%e A341476 Lim_{n->infinity} A341491(n)^(1/n) = (42671 + 8346 * sqrt(5^2 + 1)) / 5^5.
%Y A341476 Cf. A008288, A001850, A026000, A026001, A331329, A341491, A341477.
%K A341476 nonn
%O A341476 1,2
%A A341476 _Vaclav Kotesovec_, Feb 13 2021