This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341477 #20 Feb 22 2021 03:32:11 %S A341477 0,2,10,70,680,8346,125504,2218350,45335680,1047314578,27079557632, %T A341477 772687787510,24172386314240,821114930966890,30146801401143296, %U A341477 1187943632192716894,50068690149298438144,2245175953053786221730,106828553482726336102400,5371204894269759411503910 %N A341477 Coefficients related to the asymptotics of generalized Delannoy numbers. %H A341477 Vaclav Kotesovec, <a href="/A341477/b341477.txt">Table of n, a(n) for n = 1..100</a> %F A341477 Lim_{n->infinity} (binomial(k*n, n) * hypergeom([(1-k)*n, -n], [-k*n], -1))^(1/n) = (A341476(k) + A341477(k)*sqrt((k-1)^2 + 1)) / (k-1)^(k-1), for k>1. %F A341477 Lim_{n->infinity} hypergeom([(1-k)*n, -n], [-k*n], -1)^(1/n) = (A341476(k) + A341477(k)*sqrt((k-1)^2 + 1)) / k^k. %F A341477 For k > 1, A341476(k)^2 - ((k-1)^2 + 1) * A341477(k)^2 = (-1)^k * (k-1)^(2*k-2). %F A341477 Lim_{k->infinity} (A341476(k) + A341477(k)*sqrt((k-1)^2 + 1)) / (k * (k-1)^(k-1)) = 2*exp(1). %F A341477 a(n) ~ n^(n-1). %e A341477 Lim_{n->infinity} A001850(n)^(1/n) = ( 3 + 2 * sqrt(1^2 + 1)) / 1^1. %e A341477 Lim_{n->infinity} A026000(n)^(1/n) = ( 22 + 10 * sqrt(2^2 + 1)) / 2^2. %e A341477 Lim_{n->infinity} A026001(n)^(1/n) = ( 223 + 70 * sqrt(3^2 + 1)) / 3^3. %e A341477 Lim_{n->infinity} A331329(n)^(1/n) = ( 2792 + 680 * sqrt(4^2 + 1)) / 4^4. %e A341477 Lim_{n->infinity} A341491(n)^(1/n) = (42671 + 8346 * sqrt(5^2 + 1)) / 5^5. %Y A341477 Cf. A008288, A001850, A026000, A026001, A331329, A341491, A341476. %K A341477 nonn %O A341477 1,2 %A A341477 _Vaclav Kotesovec_, Feb 13 2021