This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341511 #6 Feb 15 2021 22:50:42 %S A341511 1,2,3,3,4,5,4,5,6,9,5,6,9,8,7,6,9,8,7,10,15,7,10,15,12,25,18,11,8,7, %T A341511 10,15,12,25,16,27,9,8,7,10,15,12,27,18,25,10,15,12,25,18,27,14,11,16, %U A341511 21,11,14,21,20,35,30,49,24,45,50,13,12,25,18,27,16,11,20,21,14,35,36,45,13,22,33,28,55,42,77,40,63,70,121,60,17 %N A341511 Triangular array T(n,k) = A005940(1+A156552(n)+A156552(k)), read by rows, with n >= 1, 1 <= k <= n. %C A341511 A341510 is the main entry for this dyadic function. See comments there. %H A341511 Antti Karttunen, <a href="/A341511/b341511.txt">Table of n, a(n) for n = 1..10440; the first 144 rows of the triangle</a> %H A341511 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A341511 T(n, k) = A341510(n, k). %e A341511 The triangle begins as: %e A341511 1, %e A341511 2, 3, %e A341511 3, 4, 5, %e A341511 4, 5, 6, 9, %e A341511 5, 6, 9, 8, 7, %e A341511 6, 9, 8, 7, 10, 15, %e A341511 7, 10, 15, 12, 25, 18, 11, %e A341511 8, 7, 10, 15, 12, 25, 16, 27, %e A341511 9, 8, 7, 10, 15, 12, 27, 18, 25, %e A341511 etc. %o A341511 (PARI) %o A341511 up_to = 105; %o A341511 A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); }; %o A341511 A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; %o A341511 A341510sq(n,k) = A005940(1+A156552(n)+A156552(k)); %o A341511 A341511list(up_to) = { my(v = vector(up_to), i=0); for(n=1,oo, for(k=1,n, i++; if(i > #v, return(v)); v[i] = A341510sq(n,k))); (v); }; %o A341511 v341511 = A341511list(up_to); %o A341511 A341511(n) = v341511[n]; %Y A341511 The lower triangular region of A341510 read by rows. %Y A341511 Cf. A005940, A156552. %Y A341511 Cf. A000027 (the left edge), A003961 (the right edge). %K A341511 nonn,tabl %O A341511 1,2 %A A341511 _Antti Karttunen_, Feb 15 2021