A341542 Numbers on the square spiral board that are enclosed by four primes.
12, 72, 1152, 1452, 1950, 3672, 5520, 6660, 8232, 10302, 10890, 13218, 15288, 15360, 16062, 18042, 20898, 21018, 23628, 25998, 27918, 32190, 37812, 42018, 42462, 48858, 55818, 57192, 80832, 80910, 83340, 91368, 97848, 98640, 104472, 111492, 117498, 119550
Offset: 1
Keywords
Programs
-
Python
from sympy import isprime from math import sqrt, ceil m, m_max = 2, 1000000 while m <= m_max: L = [0, 0, 0, 0] n = int(ceil((sqrt(m) + 1.0)/2.0)) z1 = 4*n*n - 12*n + 10 z2 = 4*n*n - 10*n + 7 z3 = 4*n*n - 8*n + 5 z4 = 4*n*n - 6*n + 3 z5 = 4*n*n - 4*n + 1 if m > z1 and m < z2: L = [m + 1, m - 8*n + 15, m - 1, m + 8*n - 7] elif m > z2 and m < z3: L = [m + 8*n - 5, m + 1, m - 8*n + 13, m - 1] elif m > z3 and m < z4: L = [m - 1, m + 8*n - 3, m + 1, m - 8*n + 11] elif m > z4 and m < z5: L = [m - 8*n + 9, m - 1, m + 8*n - 1, m + 1] if isprime(L[0]) == 1 and isprime(L[1]) == 1 and isprime(L[2]) == 1 and isprime(L[3]) == 1: print(m) m += 2
Comments