This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341543 #15 Feb 14 2021 05:53:24 %S A341543 8,36,200,1156,6728,39204,228488,1331716,7761800,45239076,263672648, %T A341543 1536796804,8957108168,52205852196,304278005000,1773462177796, %U A341543 10336495061768,60245508192804,351136554095048,2046573816377476,11928306344169800 %N A341543 a(n) = sqrt( Product_{j=1..n} Product_{k=1..2} (4*sin((2*j-1)*Pi/(2*n))^2 + 4*sin((2*k-1)*Pi/2)^2) ). %H A341543 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7, -7, 1) %F A341543 a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). %F A341543 a(n) = 6*a(n-1) - a(n-2) - 8. %F A341543 a(n) = 2*(A001541(n) + 1). - _Hugo Pfoertner_, Feb 14 2021 %F A341543 G.f.: 4*x*(2 - 5*x + x^2)/((1 - x)*(1 - 6*x + x^2)). - _Vaclav Kotesovec_, Feb 14 2021 %o A341543 (PARI) default(realprecision, 120); %o A341543 a(n) = round(sqrt(prod(j=1, n, prod(k=1, 2, 4*sin((2*j-1)*Pi/(2*n))^2+4*sin((2*k-1)*Pi/2)^2)))); %Y A341543 Column k=2 of A341533. %Y A341543 Cf. A001541. %K A341543 nonn %O A341543 1,1 %A A341543 _Seiichi Manyama_, Feb 14 2021