cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341561 Fourier coefficients of the modular form (1/t_{3A}) * F_{3A}^16.

This page as a plain text file.
%I A341561 #18 Jul 24 2023 09:23:51
%S A341561 0,1,54,1269,16804,134406,628398,1311968,-1701864,-14345991,-16443324,
%T A341561 25426764,11246580,16601078,505866816,-113853762,-1326884336,
%U A341561 1507092642,-3873575034,100819028,2685180888,6885133920,-20849400,10111254408,-10371867912,-412371305,-58625773596
%N A341561 Fourier coefficients of the modular form (1/t_{3A}) * F_{3A}^16.
%H A341561 Masao Koike, <a href="/A004016/a004016.pdf">Modular forms on non-compact arithmetic triangle groups</a>, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. Sloane wrote 2005 on the first page but the internal evidence suggests 1997.] See page 30.
%F A341561 Convolution product of 1/A030197 and A008655^4. - _Georg Fischer_, Mar 30 2023
%o A341561 (Sage)
%o A341561 def a(n):
%o A341561     if n==0: return 0
%o A341561     eta = x^(1/24)*product([(1 - x^k) for k in range(1, n)])
%o A341561     t3A = ((eta/eta(x=x^3))^12 + 27)^2/(eta/eta(x=x^3))^12
%o A341561     F3A = sum([rising_factorial(1/6, k)*rising_factorial(1/3, k)/
%o A341561       (rising_factorial(1,k)^2)*(108/t3A)^k for k in range(n)])
%o A341561     f = F3A^16/t3A
%o A341561     return f.taylor(x,0,n).coefficients()[n-1][0]  # _Robin Visser_, Jul 23 2023
%Y A341561 Cf. A004016, A008655, A030197, A136747, A341306, A341556, A341557, A341558.
%K A341561 sign
%O A341561 0,3
%A A341561 _Robert C. Lyons_, Feb 14 2021
%E A341561 More terms from _Georg Fischer_, Mar 30 2023