cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341583 Geometric length of the solution to the Towers of Hanoi exchanging disks puzzle with 3 pegs and n disks.

Original entry on oeis.org

0, 1, 3, 8, 18, 42, 94, 208, 450, 966, 2052, 4330, 9074, 18920, 39266, 81182, 167268, 343634, 704122, 1439496, 2936906, 5981174, 12161332, 24691514, 50066690, 101400616, 205150098, 414653998, 837377988, 1689714242, 3407154474, 6865700808, 13826659450, 27829885126
Offset: 0

Views

Author

Kevin Ryde, Feb 16 2021

Keywords

Comments

Scorer, Grundy and Smith define a variation of the Towers of Hanoi puzzle where the smallest disk moves freely and two disks can exchange positions when they differ in size by 1, are on different pegs, and each is topmost on its peg. The puzzle is to move a stack of n disks from one peg to another.
Stockmeyer et al. determine the shortest solution to the puzzle. a(n) is their d(n) which is the geometric length of the solution when the state graph is embedded in a grid of unit triangles in the manner of the sample drawing by Scorer et al.
Graph n comprises 3 copies of graph n-1. The embedding arranges these 3 copies as a large triangle with a unit gap between the corners. The edges connecting these subgraphs are in the middle of the inner sides. A move of the smallest disk is length 1. An exchange of disks s and s+1 is length 2^s, where the smallest disk is s=0.

Examples

			The graph embedding in a triangular grid is (as drawn by Scorer et al.),
                A
               / \              n=3 disks
              *---*              A to D
             /     \            geometric
            *       *         length along
           / \     / \          the path
          *---B---*---*         a(3) = 8
             /     \
        *   .       \   *
       / \ /         \ / \
      *---C           *---*
     /     \         /     \
    *       *-------*       *
   / \     / \     / \     / \
  D---*---*---*   *---*---*---*
B to C is where disks s=1 and s+1=2 exchange which is geometric length 2^s = 2.
		

Crossrefs

Cf. A341579.

Programs

  • Mathematica
    A341583list[nmax_]:=LinearRecurrence[{3,-1,-2,2,-4},{0,1,3,8,18},nmax+1];A341583list[50] (* Paolo Xausa, Jun 29 2023 *)
  • PARI
    my(p=Mod('x,'x^4-'x^3-'x^2-2), f=7*'x^3+5*'x^2+3*'x+6); a(n) = (7<
    				

Formula

a(n) = (7*2^n - A341579(n+3) + A341579(n))/2.
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) + 2*a(n-4) - 4*a(n-5).
G.f.: x * (1 - x) * (1 + x + x^2) / ( (1 - 2*x) * (1 - x - x^2 - 2*x^4) ).
G.f.: (7/2)/(1 - 2*x) - (1/2)*(7 + 5*x + 3*x^2 + 6*x^3)/(1 - x - x^2 - 2*x^4).