A341583 Geometric length of the solution to the Towers of Hanoi exchanging disks puzzle with 3 pegs and n disks.
0, 1, 3, 8, 18, 42, 94, 208, 450, 966, 2052, 4330, 9074, 18920, 39266, 81182, 167268, 343634, 704122, 1439496, 2936906, 5981174, 12161332, 24691514, 50066690, 101400616, 205150098, 414653998, 837377988, 1689714242, 3407154474, 6865700808, 13826659450, 27829885126
Offset: 0
Examples
The graph embedding in a triangular grid is (as drawn by Scorer et al.), A / \ n=3 disks *---* A to D / \ geometric * * length along / \ / \ the path *---B---*---* a(3) = 8 / \ * . \ * / \ / \ / \ *---C *---* / \ / \ * *-------* * / \ / \ / \ / \ D---*---*---* *---*---*---* B to C is where disks s=1 and s+1=2 exchange which is geometric length 2^s = 2.
Links
- Kevin Ryde, Table of n, a(n) for n = 0..700
- Paul K. Stockmeyer et al., Exchanging Disks in the Tower of Hanoi, International Journal of Computer Mathematics, volume 59, number 1-2, pages 37-47, 1995. Also author's copy. a(n) = d(n) in section 5 exercise 5.
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-2,2,-4).
- Index entries for sequences related to Towers of Hanoi
Crossrefs
Cf. A341579.
Programs
-
Mathematica
A341583list[nmax_]:=LinearRecurrence[{3,-1,-2,2,-4},{0,1,3,8,18},nmax+1];A341583list[50] (* Paolo Xausa, Jun 29 2023 *)
-
PARI
my(p=Mod('x,'x^4-'x^3-'x^2-2), f=7*'x^3+5*'x^2+3*'x+6); a(n) = (7<
Comments