This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341584 #24 Feb 21 2021 14:08:33 %S A341584 0,1,2,2,2,2,4,3,4,4,4,4,4,4,6,4,6,5,8,6,8,6,8,6,8,7,8,8,8,8,8,8,9,8, %T A341584 10,9,10,10,12,10,11,9,12,9,12,10,12,10,13,10,14,11,14,11,16,11,16,12, %U A341584 16,12,16,13,16,13,16,14,16,13,16,14,18,14,16,14,20,14,16,14,20,15,18 %N A341584 Size of the largest subset of the numbers [1..n] which does not contain a 3-term arithmetic progression modulo n. %C A341584 This is similar to A003002, but the arithmetic progression is modulo n here. %C A341584 For n >= 3, a(n) can be viewed as the maximum number of vertices that can be chosen from a regular polygon with n sides so that no three of them form an isosceles or equilateral triangle. %H A341584 Math StackExchange, <a href="https://math.stackexchange.com/questions/4012158/number-of-points-chosen-form-a-polygon-to-have-no-isosceles-and-equilateral-tria">A question about this sequence</a>. %e A341584 n, a(n), example of an optimal subset: %e A341584 0, 0, {} %e A341584 1, 1, {1} %e A341584 2, 2, {1,2} %e A341584 3, 2, {1,2} %e A341584 4, 2, {1,2} %e A341584 5, 2, {1,2} %e A341584 6, 4, {1,2,4,5} %e A341584 7, 3, {1,2,4} %e A341584 8, 4, {1,2,4,5} %e A341584 9, 4, {1,2,4,5} %e A341584 10, 4, {1,2,4,5} %e A341584 11, 4, {1,2,4,5} %e A341584 12, 4, {1,2,4,5} %e A341584 13, 4, {1,2,4,5} %e A341584 14, 6, {1,2,4,8,9,11} %e A341584 15, 4, {1,2,4,5} %e A341584 16, 6, {1,3,4,8,9,11} %e A341584 17, 5, {1,2,6,7,9} %e A341584 18, 8, {1,2,4,5,10,11,13,14} %e A341584 19, 6, {1,3,4,8,9,11} %e A341584 20, 8, {1,2,4,5,11,12,14,15} %o A341584 (C) /* For n >= 3: */ %o A341584 int a(int n) %o A341584 { %o A341584 int upp, maxb, s, i, l, h, maxs; %o A341584 uint64_t b, bs, m, mv[31], mn; %o A341584 for (l = 1; l <= 31; l++) { mv[l - 1] = 1 << 2*l; mv[l - 1] |= (1 << l); mv[l - 1] |= 1; } %o A341584 maxb = 1 << n; mn = maxb - 1; h = (n - 1) / 2; maxs = 2*n/3; upp = 0; %o A341584 for (b = 0; b < maxb; b++) { %o A341584 for (i = 0, s = 0, m = 1; i < n; i++, m <<= 1) { if (b & m) s++; } %o A341584 if (s <= maxs) { %o A341584 for (l = 1; l <= h; l++) { %o A341584 m = mv[l - 1]; %o A341584 for (i = 0; i < n; i++) { if ((b & m) == m) { l = 1000; break; } m = ((m << 1) & mn) | (m >> (n - 1)); } %o A341584 } %o A341584 if (l < 1000 && s > upp) upp = s; %o A341584 } %o A341584 } %o A341584 return upp; %o A341584 } %Y A341584 Cf. A003002. %K A341584 nonn,more %O A341584 0,3 %A A341584 _Fabio VisonĂ _, Feb 15 2021 %E A341584 a(31)-a(80) from _Bert Dobbelaere_, Feb 20 2021