A341592 Number of squarefree superior divisors of n.
1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 0, 2, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 0, 1, 1, 2, 2, 1, 0, 2, 1, 2, 2, 1, 3, 1, 2, 1, 0, 2, 4, 1, 2, 2, 4, 1, 0, 1, 2, 1, 2, 2, 4, 1, 1, 0, 2, 1, 3, 2, 2, 2
Offset: 1
Keywords
Examples
The strictly superior squarefree divisors (columns) of selected n: 1 6 8 30 60 210 420 630 1050 2310 4620 6930 ------------------------------------------------------ 1 3 . 6 10 15 21 30 35 55 70 105 6 10 15 21 30 35 42 66 77 110 15 30 30 35 42 70 70 105 154 30 35 42 70 105 77 110 165 42 70 105 210 105 154 210 70 105 210 110 165 231 105 210 154 210 330 210 165 231 385 210 330 462 231 385 770 330 462 1155 385 770 2310 462 1155 770 2310 1155 2310
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Positions of zeros are A059172.
The inferior version is A333749.
The version for prime instead of squarefree divisors is A341591.
The version for prime powers instead of squarefree divisors is A341593.
The strictly superior case is A341595.
The version for odd instead of squarefree divisors is A341675.
A033677 selects the smallest superior divisor.
A038548 counts superior (or inferior) divisors.
A056924 counts strictly superior (or strictly inferior) divisors.
A161908 lists superior divisors.
A207375 lists central divisors.
Programs
-
Maple
with(numtheory): a := n -> nops(select(d -> d*d >= n and issqrfree(d), divisors(n))): seq(a(n), n = 1..88); # Peter Luschny, Feb 20 2021
-
Mathematica
Table[Length[Select[Divisors[n],SquareFreeQ[#]&>=n/#&]],{n,100}]
-
PARI
a(n) = sumdiv(n, d, d^2 >= n && issquarefree(d)); \\ Amiram Eldar, Nov 01 2024
Comments