A341593 Number of superior prime-power divisors of n.
0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 0, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 4, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 0, 1, 1, 1
Offset: 1
Keywords
Examples
The superior prime-power divisors (columns) of selected n: n = 4374 5103 6144 7500 9000 ---------------------------- 81 81 128 125 125 243 243 256 625 729 729 512 2187 1024 2048
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Positions of zeros after the first are A051283.
The inferior version is A333750.
The version for prime instead of prime-power divisors is A341591.
The version for squarefree instead of prime-power divisors is A341592.
Dominates A341644 (the strictly superior case).
The version for odd instead of prime-power divisors is A341675.
The strictly inferior version is A341677.
A000961 lists prime powers.
A001222 counts prime-power divisors.
A005117 lists squarefree numbers.
A033677 selects the smallest superior divisor.
A038548 counts superior (or inferior) divisors.
A056924 counts strictly superior (or strictly inferior) divisors.
A161908 lists superior divisors.
A207375 lists central divisors.
Programs
-
Mathematica
Table[Length[Select[Divisors[n],PrimePowerQ[#]&>=n/#&]],{n,100}]
-
PARI
a(n) = sumdiv(n, d, d^2 >= n && isprimepower(d)); \\ Amiram Eldar, Nov 01 2024
Comments