This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341598 #11 Feb 17 2021 03:03:55 %S A341598 1,0,4,15,728,9660,454333,11921910,620800752,25052417676, %T A341598 1495629968820,81260657073596,5594820193907943,379090865741895580, %U A341598 29938401724408721880,2414113646907092768775,216602054576835471646080,20165486015516015341186800,2034029167741961519973600460 %N A341598 a(n) = Sum_{k=n..2*n} |Stirling1(2*n, k)| * Stirling1(k, n). %H A341598 Vaclav Kotesovec, <a href="/A341598/b341598.txt">Table of n, a(n) for n = 0..345</a> %F A341598 a(n) = ((2*n)!/n!) * [x^(2*n)] log(1 - log(1 - x))^n. %F A341598 a(n) ~ c * d^n * (n-1)!, where d = 5.87606029984908... and c = 0.08380514489... - _Vaclav Kotesovec_, Feb 17 2021 %t A341598 Table[Sum[Abs[StirlingS1[2 n, k]] StirlingS1[k, n], {k, n, 2 n}], {n, 0, 18}] %t A341598 Table[((2 n)!/n!) SeriesCoefficient[Log[1 - Log[1 - x]]^n, {x, 0, 2 n}], {n, 0, 18}] %o A341598 (PARI) a(n) = sum(k=n, 2*n, abs(stirling(2*n, k, 1))*stirling(k, n, 1)); \\ _Michel Marcus_, Feb 16 2021 %Y A341598 Cf. A008275, A079642, A089064, A321712, A341575, A341589. %K A341598 nonn %O A341598 0,3 %A A341598 _Ilya Gutkovskiy_, Feb 15 2021