This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A341604 #7 Feb 20 2021 23:11:42 %S A341604 990,1170,4590,7650,8550,19470,23562,23868,26334,27324,27846,31050, %T A341604 31878,34452,35190,39330,40194,44370,47430,49590,53010,56610,60030, %U A341604 62730,63270,64170,65790,70110,71910,73530,76590,80370,80910,81090,84870,90270,90630,93330,93366,100890,102510,104310,108630,111690,117450 %N A341604 Those primitive elements of A337386 that have exactly one primitive nondeficient divisor (A006039). %C A341604 Terms k of A337479 for which A337690(k) = 1. %H A341604 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A341604 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %o A341604 (PARI) %o A341604 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A341604 isA337386(n) = { my(x=A003961(n)); (sigma(x)>=2*x); }; %o A341604 isA337479(n) = (isA337386(n)&&(1==sumdiv(n,d,isA337386(d)))); %o A341604 isA071395(n) = if(sigma(n) <= 2*n, 0, fordiv(n, d, if((d != n)&&(sigma(d) >= 2*d), return(0))); (1)); \\ After code in A071395 %o A341604 isA006039(n) = ((sigma(n)==(2*n))||isA071395(n)); %o A341604 A337690(n) = sumdiv(n,d,isA006039(d)); %o A341604 isA341604(n) = (isA337479(n)&&(1==A337690(n))); %Y A341604 Cf. A003961, A006039, A337386, A337479, A337539, A337690. %K A341604 nonn %O A341604 1,1 %A A341604 _Antti Karttunen_, Feb 20 2021