cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341605 Square array A(n,k) = A017665(A246278(n,k)), read by falling antidiagonals; numerator of the abundancy index as applied onto prime shift array A246278.

This page as a plain text file.
%I A341605 #34 Jan 04 2025 16:11:01
%S A341605 3,7,4,2,13,6,15,8,31,8,9,40,48,57,12,7,32,156,96,133,14,12,26,72,400,
%T A341605 168,183,18,31,16,248,16,1464,252,307,20,13,121,84,684,216,2380,360,
%U A341605 381,24,21,124,781,144,1862,280,5220,480,553,30,18,104,342,2801,240,3294,432,7240,720,871,32
%N A341605 Square array A(n,k) = A017665(A246278(n,k)), read by falling antidiagonals; numerator of the abundancy index as applied onto prime shift array A246278.
%C A341605 Ratio A341605(row, col)/A341606(row, col) shows the abundancy index when applied to the natural numbers > 1 as ordered in the prime shift array A246278:
%C A341605   n =       1            2        3              4            5              6
%C A341605 2n  =       2            4        6              8           10             12
%C A341605 ----+--------------------------------------------------------------------------
%C A341605   1 |     3/2,         7/4,     2/1,          15/8,         9/5,           7/3,
%C A341605   2 |     4/3,        13/9,     8/5,         40/27,       32/21,         26/15,
%C A341605   3 |     6/5,       31/25,   48/35,       156/125,       72/55,       248/175,
%C A341605   4 |     8/7,       57/49,   96/77,       400/343,       16/13,       684/539,
%C A341605   5 |   12/11,     133/121, 168/143,     1464/1331,     216/187,     1862/1573,
%C A341605   6 |   14/13,     183/169, 252/221,     2380/2197,     280/247,     3294/2873,
%C A341605   7 |   18/17,     307/289, 360/323,     5220/4913,     432/391,     6140/5491,
%C A341605 we see that when going down in each column, the magnitude of the ratio decreases monotonically, which follows because the abundancy index of prime(i+1)^e is less than that of prime(i)^e (see A336389). The first ratio that is < 2 (corresponding to the first deficient number obtained when 2*n is successively prime shifted) is found at row number 1+A336835(2*n) = 1+A378985(n) for column n.
%C A341605 Each ratio r at row n and column k is a product of the topmost ratio (on row 1), and the product of all ratios on rows 1..(row-1) given in arrays A341626/A341627:
%C A341605   n =       1            2        3              4            5              6
%C A341605 2n  =       2            4        6              8           10             12
%C A341605 ----+--------------------------------------------------------------------------
%C A341605   1 |     8/9,       52/63,     4/5,         64/81,     160/189,         26/35,
%C A341605   2 |    9/10,     279/325,     6/7,     1053/1250,     189/220,       372/455,
%C A341605   3 |   20/21,   1425/1519,   10/11,   12500/13377,     110/117,     4275/4774,
%C A341605   4 |   21/22,     343/363,   49/52,   62769/66550,     351/374,     2401/2574,
%C A341605   5 |   77/78, 22143/22477,   33/34, 791945/804102,   6545/6669, 199287/205751,
%C A341605   6 | 117/119, 51883/52887, 130/133, 573417/584647, 13338/13685, 518830/531981,
%C A341605 In other words, if r(row,col) = A341605(row,col)/A341606(row,col) and d(row,col) = A341626(row,col)/A341627(row,col), then r(row+1,col) = r(row,col)*d(row,col), that is, each column in the latter arrays of ratios gives the first quotients of ratios in the corresponding columns in the former array, and they are all < 1.
%C A341605 See also comments and examples in A341606.
%C A341605 By lemma given in A341529, the ratio A341626/A341627 stays in open interval (0.5 .. 1). - _Antti Karttunen_, Jan 02 2025
%H A341605 Antti Karttunen, <a href="/A341605/b341605.txt">Table of n, a(n) for n = 1..22155; the first 210 antidiagonals</a>
%H A341605 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A341605 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A341605 A(n, k) = A017665(A246278(n, k)).
%F A341605 A(n, k) = A355927(n, k) / A355925(n, k). - _Antti Karttunen_, Jul 22 2022
%F A341605 A(n, k) = A379500(n, k) / A341606(n, k). - _Antti Karttunen_, Jan 04 2025
%e A341605 The top left corner of the array:
%e A341605   k=   1    2    3      4    5      6    7       8      9     10    11      12
%e A341605 2k =   2    4    6      8   10     12   14      16     18     20    22      24
%e A341605 ----+--------------------------------------------------------------------------
%e A341605 n=1 |  3,   7,   2,    15,   9,     7,  12,     31,    13,    21,   18,      5,
%e A341605   2 |  4,  13,   8,    40,  32,    26,  16,    121,   124,   104,   56,     16,
%e A341605   3 |  6,  31,  48,   156,  72,   248,  84,    781,   342,   372,  108,   1248,
%e A341605   4 |  8,  57,  96,   400,  16,   684, 144,   2801,   152,   114,  160,   4800,
%e A341605   5 | 12, 133, 168,  1464, 216,  1862, 240,  16105,  2196,  2394,  288,  20496,
%e A341605   6 | 14, 183, 252,  2380, 280,  3294, 336,  30941,  4298,  3660,  420,   2520,
%e A341605   7 | 18, 307, 360,  5220, 432,  6140, 540,  88741,  6858,  7368,  576, 104400,
%e A341605   8 | 20, 381, 480,  7240, 600,  9144, 640, 137561, 11060, 11430,   40, 173760,
%e A341605   9 | 24, 553, 720, 12720, 768, 16590, 912, 292561, 20904, 17696, 1008, 381600,
%e A341605 etc.
%o A341605 (PARI)
%o A341605 up_to = 105;
%o A341605 A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
%o A341605 A017665(n) = numerator(sigma(n)/n);
%o A341605 A341605sq(row,col) = A017665(A246278sq(row,col));
%o A341605 A341605list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341605sq(col,(a-(col-1))))); (v); };
%o A341605 v341605 = A341605list(up_to);
%o A341605 A341605(n) = v341605[n];
%Y A341605 Cf. A017665, A246278, A341626, A341627, A378985, A379500.
%Y A341605 Cf. A008864 (column 1), A378995 (row 1).
%Y A341605 Cf. A341606 (denominators), A341626 (numerators of the columnwise first quotients of A341605/A341606), A341627 (and their denominators), A355925, A355927.
%Y A341605 Cf. also A336389, A336834, A336835, A337473, A337474.
%K A341605 nonn,frac,tabl,look
%O A341605 1,1
%A A341605 _Antti Karttunen_, Feb 16 2021