cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341606 Square array A(n,k) = A017666(A246278(n,k)), read by falling antidiagonals; denominator of abundancy index as applied onto prime shift array A246278.

This page as a plain text file.
%I A341606 #25 Jul 24 2022 10:44:15
%S A341606 2,4,3,1,9,5,8,5,25,7,5,27,35,49,11,3,21,125,77,121,13,7,15,55,343,
%T A341606 143,169,17,16,11,175,13,1331,221,289,19,6,81,65,539,187,2197,323,361,
%U A341606 23,10,75,625,119,1573,247,4913,437,529,29,11,63,245,2401,209,2873,391,6859,667,841,31
%N A341606 Square array A(n,k) = A017666(A246278(n,k)), read by falling antidiagonals; denominator of abundancy index as applied onto prime shift array A246278.
%C A341606 See also comments and examples in A341605.
%H A341606 Antti Karttunen, <a href="/A341606/b341606.txt">Table of n, a(n) for n = 1..22155; the first 210 antidiagonals</a>
%H A341606 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A341606 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A341606 A(n, k) = A017666(A246278(n, k)).
%F A341606 A(n, k) = A246278(n, k) / A355925(n, k). - _Antti Karttunen_, Jul 22 2022
%e A341606 The top left corner of the array:
%e A341606    k=  1    2    3      4    5      6    7       8      9     10   11      12
%e A341606   2k=  2    4    6      8   10     12   14      16     18     20   22      24
%e A341606     |
%e A341606 ----+--------------------------------------------------------------------------
%e A341606   1 |  2,   4,   1,     8,   5,     3,   7,     16,     6,    10,  11,      2,
%e A341606   2 |  3,   9,   5,    27,  21,    15,  11,     81,    75,    63,  39,      9,
%e A341606   3 |  5,  25,  35,   125,  55,   175,  65,    625,   245,   275,  85,    875,
%e A341606   4 |  7,  49,  77,   343,  13,   539, 119,   2401,   121,    91, 133,   3773,
%e A341606   5 | 11, 121, 143,  1331, 187,  1573, 209,  14641,  1859,  2057, 253,  17303,
%e A341606   6 | 13, 169, 221,  2197, 247,  2873, 299,  28561,  3757,  3211, 377,   2197,
%e A341606   7 | 17, 289, 323,  4913, 391,  5491, 493,  83521,  6137,  6647, 527,  93347,
%e A341606   8 | 19, 361, 437,  6859, 551,  8303, 589, 130321, 10051, 10469,  37, 157757,
%e A341606   9 | 23, 529, 667, 12167, 713, 15341, 851, 279841, 19343, 16399, 943, 352843,
%e A341606 etc.
%e A341606 Arrays A341607 and A341608 give the largest prime factor (A006530) and the number of prime factors with multiplicity (A001222) of these terms. There are nonmonotonicities in both, for example, in columns 11, 12 and 14. This is illustrated below:
%e A341606 For column 11, with successive prime shifts of 22, we obtain:
%e A341606      n sigma(n)             sigma(n)/n in lowest terms,
%e A341606                             A017665(n)/A017666(n)
%e A341606 ---------------------------------------------------------------------------
%e A341606     22   36 = (2^2 * 3^2),        18/11  = (2 * 3^2)/11
%e A341606     39   56 = (2^3 * 7),          56/39  = (2^3 * 7)/(3 * 13)
%e A341606     85  108 = (2^2 * 3^3),       108/85  = (2^2 * 3^3)/(5 * 17)
%e A341606    133  160 = (2^5 * 5),         160/133 = (2^5 * 5)/(7 * 19)
%e A341606    253  288 = (2^5 * 3^2),       288/253 = (2^5 * 3^2)/(11 * 23)
%e A341606    377  420 = (2^2 * 3 * 5 * 7), 420/377 = (2^2 * 3 * 5 * 7)/(13 * 29)
%e A341606    527  576 = (2^6 * 3^2),       576/527 = (2^6 * 3^2)/(17 * 31)
%e A341606    703  760 = (2^3 * 5 * 19),     40/37  = (2^3 * 5)/37 <-- A001222 drops!
%e A341606    943 1008 = (2^4 * 3^2 * 7),  1008/943 = (2^4 * 3^2 * 7)/(23 * 41)
%e A341606 -
%e A341606 On the second last row, the denominator of 760/703 (= 40/37) has only one prime factor (instead of two), namely 37, because sigma(703) has 19 as its divisor, which otherwise would be present in the denominator.
%e A341606 -
%e A341606 For column 12, with successive prime shifts of 24, we obtain:
%e A341606       n sigma(n)                        sigma(n)/n
%e A341606 ---------------------------------------------------------------------------
%e A341606      24     60 = (2^2 * 3 * 5),            5/2     = (5)/(2)
%e A341606     135    240 = (2^4 * 3 * 5),           16/9     = (2^4)/(3^2)
%e A341606     875   1248 = (2^5 * 3 * 13),        1248/875   = (2^5 * 3 * 13)/(5^3 * 7)
%e A341606    3773   4800 = (2^6 * 3 * 5^2),       4800/3773  = (2^6 * 3 * 5^2)/(7^3 * 11)
%e A341606   17303  20496 = (2^4 *3 *7 *61),      20496/17303 = (2^4 *3 *7 *61)/(11^3 * 13)
%e A341606   37349  42840 = (2^3 *3^2 *5 *7 *17),  2520/2197  = (2^3 * 3^2 *5 *7)/(13^3) !!
%e A341606   93347 104400 = (2^4 *3^2 *5^2 *29), 104400/93347 = (2^4 *3^2 *5^2 *29)/(17^3 *19)
%e A341606 -
%e A341606 On the second last row, the denominator of 42840/37349 (= 2520/2197) has no prime factor 17 (which would be otherwise present), because sigma(37349) has it as its divisor.
%e A341606 -
%e A341606 For column 14, with successive prime shifts of 28, we obtain:
%e A341606      n sigma(n)               sigma(n)/n
%e A341606 ---------------------------------------------------------------------------
%e A341606     28   56 = (2^3 * 7),             2/1,
%e A341606     99  156 = (2^2 * 3 * 13),       52/33   = (2^2 * 13)/(3 * 11)
%e A341606    325  434 = (2 * 7 * 31),        434/325  = (2 * 7 * 31)/(5^2 * 13)
%e A341606    833 1026 = (2 * 3^3 * 19),     1026/833  = (2 * 3^3 * 19)/(7^2 * 17)
%e A341606   2299 2660 = (2^2 * 5 * 7 * 19),  140/121  = (2^2 * 5 * 7)/(11^2) <-- !!
%e A341606   3887 4392 = (2^3 * 3^2 * 61),   4392/3887 = (2^3 * 3^2 * 61)/(13^2 * 23)
%e A341606 On the second last row, the denominator of 2660/2299 (= 140/121) has no prime factor 19 (which would be otherwise present), because sigma(2299) has it as its divisor.
%e A341606 Note that if A006530 does not grow, then certainly A001222 drops.
%o A341606 (PARI)
%o A341606 up_to = 105;
%o A341606 A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
%o A341606 A017666(n) = denominator(sigma(n)/n);
%o A341606 A341606sq(row,col) = A017666(A246278sq(row,col));
%o A341606 A341606list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341606sq(col,(a-(col-1))))); (v); };
%o A341606 v341606 = A341606list(up_to);
%o A341606 A341606(n) = v341606[n];
%Y A341606 Cf. A017666, A246278.
%Y A341606 Cf. A341605 (numerators), A341626 (numerators of the columnwise first quotients of A341605/A341606), A341627 (and their denominators), A355925, A355927.
%Y A341606 Cf. A341607 (the largest prime factor in this array), A341608 (the number of prime factors, with multiplicity).
%Y A341606 Cf. also A007691, A341523, A341524.
%K A341606 nonn,frac,tabl,look
%O A341606 1,1
%A A341606 _Antti Karttunen_, Feb 16 2021