cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341607 Square array A(n,k) = A006530(A017666(A246278(n,k))), read by falling antidiagonals.

This page as a plain text file.
%I A341607 #8 Feb 20 2021 07:52:30
%S A341607 2,2,3,1,3,5,2,5,5,7,5,3,7,7,11,3,7,5,11,11,13,7,5,11,7,13,13,17,2,11,
%T A341607 7,13,11,17,17,19,3,3,13,11,17,13,19,19,23,5,5,5,17,13,19,17,23,23,29,
%U A341607 11,7,7,7,19,17,23,19,29,29,31,2,13,11,11,11,23,19,29,23,31,31,37,13,3,17,13,13,13,29,23,31,29,37,37,41
%N A341607 Square array A(n,k) = A006530(A017666(A246278(n,k))), read by falling antidiagonals.
%H A341607 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A341607 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A341607 A(n,k) = A006530(A341606(n, k)) = A006530(A017666(A246278(n,k))).
%e A341607 The top left corner of the array:
%e A341607    n=   1   2   3   4   5   6   7   8   9  10  11  12   13  14  15  16   17
%e A341607   2n=   2   4   6   8  10  12  14  16  18  20  22  24   26  28  30  32   34
%e A341607 -----+----------------------------------------------------------------------
%e A341607    1 |  2,  2,  1,  2,  5,  3,  7,  2,  3,  5, 11,  2,  13,  1,  5,  2,  17,
%e A341607    2 |  3,  3,  5,  3,  7,  5, 11,  3,  5,  7, 13,  3,  17, 11,  7,  3,  19,
%e A341607    3 |  5,  5,  7,  5, 11,  7, 13,  5,  7, 11, 17,  7,  19, 13, 11,  5,  23,
%e A341607    4 |  7,  7, 11,  7, 13, 11, 17,  7, 11, 13, 19, 11,  23, 17, 13,  7,  29,
%e A341607    5 | 11, 11, 13, 11, 17, 13, 19, 11, 13, 17, 23, 13,  29,*11, 17, 11,  31,
%e A341607    6 | 13, 13, 17, 13, 19, 17, 23, 13, 17, 19, 29,*13,  31, 23, 19, 13,  37,
%e A341607    7 | 17, 17, 19, 17, 23, 19, 29, 17, 19, 23, 31, 19,  37, 29, 23, 17,  41,
%e A341607    8 | 19, 19, 23, 19, 29, 23, 31, 19, 23, 29, 37, 23,  41, 31, 29, 19,  43,
%e A341607    9 | 23, 23, 29, 23, 31, 29, 37, 23, 29, 31, 41, 29,  43, 37, 31, 23,  47,
%e A341607   10 | 29, 29, 31, 29, 37, 31, 41, 29, 31, 37, 43, 31,  47, 41, 37, 29,  53,
%e A341607   11 | 31, 31, 37, 31, 41, 37, 43, 31, 37, 41, 47,*31,  53, 43, 41, 31,  59,
%e A341607   12 | 37, 37, 41, 37, 43, 41, 47, 37, 41, 43, 53, 41,  59, 47, 43, 37,  61,
%e A341607   13 | 41, 41, 43, 41, 47, 43, 53, 41, 43, 47, 59, 43,  61, 53, 47, 41,  67,
%e A341607   14 | 43, 43, 47, 43, 53, 47, 59, 43, 47, 53, 61, 47,  67, 59, 53, 43,  71,
%e A341607   15 | 47, 47, 53, 47, 59, 53, 61, 47, 53, 59, 67, 53,  71, 47, 59, 47,  73,
%e A341607   16 | 53, 53, 59, 53, 61, 59, 67, 53, 59, 61, 71, 59,  73, 67, 61, 53,  79,
%e A341607   17 | 59, 59, 61, 59, 67, 61, 71, 59, 61, 67, 73, 61,  79, 71, 67, 59,  83,
%e A341607   18 | 61, 61, 67, 61, 71, 67, 73, 61, 67, 71, 79, 67,  83, 73, 71, 61,  89,
%e A341607   19 | 67, 67, 71, 67, 73, 71, 79, 67, 71, 73, 83, 71,  89, 79, 73, 67,  97,
%e A341607   20 | 71, 71, 73, 71, 79, 73, 83, 71, 73, 79, 89, 73,  97, 83, 79, 71, 101,
%e A341607   21 | 73, 73, 79, 73, 83, 79, 89, 73, 79, 83, 97, 79, 101, 89, 83, 73, 103,
%e A341607 etc.
%e A341607 Positions where columns are not strictly monotonic are marked with an asterisk (*). See the example section of A341606 for further elaboration.
%o A341607 (PARI)
%o A341607 up_to = 105;
%o A341607 A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
%o A341607 A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
%o A341607 A017666(n) = denominator(sigma(n)/n);
%o A341607 A341607sq(row,col) = A006530(A017666(A246278sq(row,col)));
%o A341607 A341607list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341607sq(col,(a-(col-1))))); (v); };
%o A341607 v341607 = A341607list(up_to);
%o A341607 A341607(n) = v341607[n];
%Y A341607 Cf. A006530, A017666, A246278, A341606, A341608, A341628.
%K A341607 nonn,tabl
%O A341607 1,1
%A A341607 _Antti Karttunen_, Feb 16 2021